Page 338 - Determinants and Their Applications in Mathematical Physics
P. 338

A.6 The Generalized Geometric Series and Eulerian Polynomials  323

          Rodrigues formula.
                                  1       2             d
                         P n (x)=    D (x − 1) ,   D =    ;
                                       n
                                               n
                                 2 n!                  dx
                                  n
          Generating function relation.
                                              ∞
                                          1
                                      2 −
                           (1 − 2xh + h )  2 =   P n (x)h ;
                                                       n
                                             n=0
          Recurrence relations.
                    (n +1)P n+1 (x) − (2n +1)xP n (x)+ nP n−1 (x)=0,
                       2

                     (x − 1)P (x)= n[xP n (x) − P n−1 (x)];
                             n
          Differential equation.
                           2


                     (1 − x )P (x) − 2xP (x)+ n(n +1)P n (x)=0;
                              n         n
          Appell relation. If
                                           2 −n/2
                              φ n (x)=(1 − x )  P n (x),
          then

                                 φ (x)= nFφ n−1 (x),
                                  n
          where
                                            2 −3/2
                                  F =(1 − x )    .
          A.6    The Generalized Geometric Series and
                 Eulerian Polynomials

          The generalized geometric series φ m (x) and the closely related function
          ψ m (x) are defined as follows:
                                          ∞

                                  φ m (x)=   r x ,                  (A.6.1)
                                              m r
                                          r=0
                                          ∞

                                  ψ m (x)=   r x .                  (A.6.2)
                                              m r
                                          r=1
          The two sums differ only in their lower limits:
                               φ m (x)= ψ m (x),  m > 0,
                                         1
                               φ 0 (x)=     ,
                                       1 − x
                                         x
                               ψ 0 (x)=
                                       1 − x
                                     = xφ 0 (x)
                                     = φ 0 (x) − 1.                 (A.6.3)
   333   334   335   336   337   338   339   340   341   342   343