Page 328 - Determinants and Their Applications in Mathematical Physics
P. 328

A.3 Multiple-Sum Identities  313

                        is invariant under any permutation of the parameters k r ,
          4. If F k 1 k 2 ...k m
             1 ≤ r ≤ m, then
                                                             k 1 ,k 2 ,...,k m
                                         1
                                      =                                      ,
                     F k 1 k 2 ...k m  G k 1 k 2 ...k m  F k 1 k 2 ...k m  G j 1 j 2 ...j m
                                         m!
             k 1 ,k 2 ,...,k m              k 1 ,k 2 ,...,k m  j 1 ,j 2 ,...,j m
             where the sum on the left ranges over the m! permutations of the param-
             eters and, in the inner sum on the right, the parameters j r ,1 ≤ r ≤ m,
             range over the m! permutations of the k r .
          Proof. Denote the sum on the left by S. The m! permutations of the
          parameters k r give m! alternative formulae for S, which differ only in the
                                          . The identity appears after summing
          order of the parameters in G k 1 k 2 ...k m
          these m! formulas.
             Illustration. Put m = 3 and use a simpler notation. Let

                                    S =    F ijk G ijk .
                                        i,j,k
             Then,

                             S =    F ikj G ikj =  F ijk G ikj
                                 ..................
                                               i,j,k
                                 i,k,j

                             S =    F kji G kji =  F ijk G kji .
                                 k,j,i        i,j,k
             Summing these 3! formulas for S,

                         3! S =   F ijk (G ijk + G ikj + ··· + G kji ),
                               i,j,k
                                1        i,j,k

                           S =              G pqr .
                               3!    F ijk
                                         p,q,r
                                 i,j,k
          5.
                         n

                               F k 1 k 2 ...k m  G k 1 k 2 ...k m
                     k 1 ,k 2 ,...,k m =1
                                                 k 1 ,k 2 ,...,k m
                            1
                                   n
                         =               F k 1 k 2 ...k m  G j 1 j 2 ...j m .
                           m!
                              k 1 ,k 2 ,...,k m =1  j 1 ,j 2 ,...,j m
             The inner sum on the right is identical with the inner sum on the right
             of Identity 4 and the proof is similar to that of Identity 4. In this case,
             the number of terms in the sum on the left is m , but the number of
                                                        n
             alternative formulas for this sum remains at m!.
            The identities given in 3–5 are applied in Section 6.10.3 on the Einstein
          and Ernst equations.
   323   324   325   326   327   328   329   330   331   332   333