Page 348 - Determinants and Their Applications in Mathematical Physics
P. 348

√
                                                                2 2n
                      A.10 Formulas Related to the Function (x +  1+ x )  333
                                                                     2
          Proof. Replace x by −x −1  in (A.10.1), multiply by x , and put x = z.
                                                          2n
          The result is

                   √                                    1
                                     n
                                                          n
             (−1+    1+ z) 2n  = z +   λ ni z n−i  − (1 + z) 2  µ ni z n−i
                                 n
                                    i=1                  i=1
                              n+1                       n
                                          j−1         1            j−1
                            =     λ n,n−j+1 z  − (1 + z) 2  µ n,n−j+1 z  .
                              j=1                      j=1
          Rearrange, multiply by (1 + z) −1/2  and apply (A.10.4):
          ∞      n+1               n
                             j−1              j−1       −1/2     √
             ν i z  i  λ n,n−j+1 z  =  µ n,n−j+1 z  +(1+z)  (−1+ 1+ z) .
                                                                        2n
          i=0    j=1              j=1
          In some detail,
                      2
          (1 + ν 1 z + ν 2 z + ···)(λ nn + λ n,n−1 z + ··· + λ n1 z n−1  + λ n0 z )
                                                               n
                                               z  2n     −1/2     1
                                             1 2             	           
 2n
                                       n−1
            =(µ nn + µ n,n−1 z + ··· + µ n1 z  )+  (1 + z)     1 − z + ···   .
                                               2                  4
          Note that there are no terms containing z , z n+1 ,...,z 2n−1  on the right-
                                               n
          hand side and that the coefficient of z  2n  is 2 −2n . Hence, equating coefficients
          of z  n−1+i ,1 ≤ i ≤ n +1,
                         n+1
                                            0,    1 ≤ i ≤ n

                            λ n,j−1 ν i+j−2 =
                                            2 −2n ,i = n +1.
                         j=1
          The theorem appears when n is replaced by (n − 1) and is ap-
          plied in Section 4.11.3 in connection with a determinant with binomial
          elements.
            It is convenient to redefine the functions λ nr and µ nr for an application
          in Section 4.13.1, which, in turn, is applied in Section 6.10.5 on the Einstein
          and Ernst equations.
            If n is a positive integer,
                              +                   +
                                                        2
                          (x +  1+ x )   = g n + h n  1+ x ,       (A.10.6)
                                     2 2n
          where
                               n

                         g n =   λ nr (2x) ,  an even function,
                                        2r
                              r=0
                          g 0 =1;
                               n
                                        2r−1
                      h n (x)=   µ nr (2x)  ,  an odd function,
                              r=1
                         h 0 =0.                                   (A.10.7)
   343   344   345   346   347   348   349   350   351   352   353