Page 349 - Determinants and Their Applications in Mathematical Physics
P. 349

334   Appendix
                                n  	 n + r
                        λ nr =              ,  1 ≤ r ≤ n,
                              n + r    2r
                        λ n0 =1,  n ≥ 0;
                        µ nr =  2rλ nr  ,  1 ≤ r ≤ n,
                                n
                        µ n0 =0,  n ≥ 0.                           (A.10.8)
          Changing the sign of x in (A.10.6),
                              +                   +
                                                        2
                          (x −  1+ x )   = g n − h n  1+ x .       (A.10.9)
                                     2 2n
          Hence,
                            +                +         .
                     1
                      -
                g n =  (x +   1+ x )  +(x −    1+ x )   ,
                                                   2 2n
                                  2 2n
                     2
                            +                +         . +
                                                               2 −1
                     1
                      -
                                                                   .
                h n =  (x +   1+ x )  − (x −   1+ x )   ( 1+ x ) (A.10.10)
                                  2 2n
                                                   2 2n
                     2
          These functions satisfy the recurrence relations
                                                     2
                                       2
                          g n+1 = (1+2x )g n +2x(1 + x )h n ,
                                       2
                          h n+1 = (1+2x )h n +2xg n .             (A.10.11)
          Let
                              +               +        .
                         -
                   f n =  1  (x +  1+ x ) +(x −  1+ x )  .        (A.10.12)
                                                     2 n
                                     2 n
                       2
          Lemmas.
          a. f 2n = g n
          b. f 2n+1 =  g n+1 − g n .
                        2x
          Proof. The proof of (a) is trivial. To prove (b), note that
                                     +               +
                              1
                                                           2
                               -
                       f 2n+1 =  (x +       2          1+ x )
                              2        1+ x )(g n + h n
                                    +               +       .
                                           2              2
                              +(x −   1+ x )(g n − h n  1+ x )
                                         2
                            = xg n +(1+ x )h n .                  (A.10.13)
          The result is obtained by eliminating h n from the first line of (A.10.11).
            In the next theorem, ∆ is the finite-difference operator (Appendix A.8).
          Theorem A.8.
          a. g m+n + g m−n =2g m g n ,
          b. ∆(g m+n−1 + g m−n−1 )=2g n ∆g m−1 ,
               2
          c. 2x (g m+n−1 − g m−n )=∆g m−1 ∆g n−1 ,
          d. ∆(g m+n−1 − g m−n )=2g m ∆g n−1 ,
                                   2
          e. g m+n+1 + g m−n = 2(1 + x )(g m + xh m )(g n + xh n ),
                                      2
          f. ∆(g m−n + g m−n )=4x(1 + x )h m (g n − xh n ),
                                 2
          g. g m+n − g m−n = 2(1 + x )h m h n ,
                                          2
          h. ∆(g m+n−1 − g m−n−1 )=4x(1 + x )h n (g m − xh m ).
   344   345   346   347   348   349   350   351   352   353   354