Page 354 - Determinants and Their Applications in Mathematical Physics
P. 354

A.12 B¨acklund Transformations  339

                              ∇ψ      1     2
                         ∇·        =    (φ∇ ψ −  φ ·  ψ),         (A.12.10)
                               φ      φ 2

                              ∇ψ      1     2
                         ∇·        =    (φ∇ ψ − 2∇φ ·  ψ),        (A.12.11)
                               φ 2    φ 3
                                      1     2       2
                            2
                           ∇ (log φ)=   [φ∇ φ − (∇φ) ],           (A.12.12)
                                      φ 2
                             2
                           ∇ (log ρ)=0.                           (A.12.13)
          Applying (A.12.12) and (A.12.11), the coupled equations (A.12.2) and
          (A.12.3) become
                                  2
                                2
                                                2
                               φ ∇ (log φ)+(∇ψ) =0,               (A.12.14)

                                            ∇ψ
                                       ∇·        =0.              (A.12.15)
                                            φ 2
          Transformation β (Ehlers)
          If the pair P(φ, ψ) is a solution of (A.12.4) and (A.12.5), and φ and ψ are


          functions which satisfy the relations
                 ρ

          a. φ =   ,
                 φ
             ∂ψ      ωρ ∂ψ
          b.     = −      ,
             ∂ρ      φ 2  ∂z
             ∂ψ     ωρ ∂ψ   2
          c.     =       ,(ω = −1),
             ∂z    φ 2  ∂ρ
          then the pair P (φ ,ψ ) is also a solution.



          Proof. Applying (A.12.6) and (A.12.7) to (A.12.15),

                                       1 ∂ψ 1 ∂ψ
                                  ∇·        ,        =0,
                                        2
                                               2
                                       φ ∂ρ φ ∂z

                           ∂    ρ ∂ψ      ∂   ρ ∂ψ
                                       +             =0,
                                2
                           ∂ρ  φ ∂ρ      ∂z   φ ∂z
                                               2
          which is satisfied by (b) and (c). Eliminating ψ from (b) and (c),
                  	  2    
      	  2
                ∂   φ ∂ψ       ∂   φ ∂ψ
                            +              =0,
                ∂ρ   ρ ∂ρ     ∂z   ρ ∂z
                         2
                                        2
                        ∂ ψ    1 ∂ψ    ∂ ψ     2  	 ∂φ ∂ψ    ∂φ ∂ψ
                            −       +      = −           +          .
                        ∂ρ 2  ρ ∂ρ     ∂z 2    φ   ∂ρ ∂ρ    ∂z ∂z
          Hence, referring to (A.12.8) and (a),
                             2φ   	 1  ρ ∂φ  
  ∂ψ     ρ ∂φ ∂ψ
                       2

                     ∇ ψ =          −             −
                                                     2
                                       2
                             ρ    φ   φ ∂ρ    ∂ρ    φ ∂z ∂z
                                                   ρ
                             2φ     ∂  	 
  ∂ψ     ∂  	 
  ∂ψ
                                     ρ
                          =                 +
                             ρ   ∂ρ  φ   ∂ρ    ∂z  φ   ∂z
   349   350   351   352   353   354   355   356   357   358   359