Page 359 - Determinants and Their Applications in Mathematical Physics
P. 359

344   Bibliography

          T.H. Andres, W.D. Hoskins, R.G. Stanton, The determinant of a class of skew-
            symmetric Toeplitz matrices. Linear. Alg. Applic. 14 (1976), 179–186. [MR
            58 (1979), 5713; Zbl 416 (1980), 15005.]
          G.E. Andrews, W.H. Burge, Determinantal identities. Pacific J. Math. 158
            (1993), 1–14.
          J.W. Archbold, Algebra, 4th edition, Pitman, London, 1970.
          N. Asano, Y. Kato, Fredholm determinant solution for the inverse scattering
            transform of the N × N Zakharov-Shabat equation. Prog. Theor. Phys. 83
            (1990), 1090–1107. [MR 91k: 34133.]
          N.B. Backhouse, A.G. Fellouris, On the superdeterminant function for superma-
            trices. J. Phys. A 17 (1984), 1389–1395. [MR 86c: 58014.]
          G.A. Baker, P.R. Graves-Morris, Pad´ Approximants, Parts 1, 2. Encyclopedia of
                                       e
            Mathematics and Its Applications, Vols. 13 and 14, Addison-Wesley, Reading,
            MA, 1981. [MR 83a: 41009a, b.]
          M. Barnebei, A. Brini, Symmetrized skew-determinants. Commun. Alg. 15
            (1987), 1455–1468. [MR 89a: 20010.]
          W.W. Barrett, C.R. Johnson, Determinantal formulae for matrices with sparse
            inverses. Linear Alg. Applic. 56 (1984), 73–88. [Zbl 523 (1984), 15008.]
          E. Barton, Multiplication of determinants. Math. Gaz. 47 (1963), 54–55.
          E. Basor, Asymptotic formulas for Toeplitz determinants. Trans. Am. Math. Soc.
            239 (1978), 33–65. [MR 58 (1979), 12484.]
          E.L. Basor, A localization theorem for Toeplitz determinants. Indiana Univ.
            Math. J. 28 (1979), 975–983. [MR 81e: 47029.]
          E. Basor, J.W. Helton, A new proof of the Szeg¨o limit theorem and new results for
            Toeplitz operators with discontinuous symbol, J. Operator Theory 3 (1980),
            23–39. [MR 81m: 47042.]
          E. Basor, H. Widom, Toeplitz and Wiener-Hopf determinants with piecewise
            continuous symbols. J. Funct. Anal. 50 (1983), 387–413. [MR 85d: 47026.]
          W. Bauhardt, C. P¨oppe, The Fredholm determinant method for discrete inte-
            grable evolution equations. Lett. Math. Phys. 13 (1987), 167–178. [MR 88g:
            35165.]
          M Bautz, Uber (0, 1)-determinanten mit grossen absolutwerten. Wiss. Z. Tech.
            Hochsch. Ilmenau 27 (1981), 39–55. [MR 82m: 15010; Zbl 481 (1982), 15008.]
          G. Baxter, P. Schmidt, Determinants of a certain class of non-Hermitian Toeplitz
            matrices. Math. Scand. 9 (1961), 122–128. [MR 23A (1962), 3949.]
          N. Bebiano, J.K. Merikoski, J. da Providencia, On a conjecture of G.N. de Oliveira
            on determinants. Linear Multilinear Alg. 20 (1987), 167–170. [MR 88b: 15005.]
          E.F. Bechenbach, R. Bellman, On the positivity of circulant and skew-circulant
            determinants. General Inequalities. Proc. First Internat. Conf. Math. Res.
            Inst. Oberwalfach 1976, Birkh¨auser, Bessel, 1978, Vol. 1, pp. 39–48. [MR 58
            (1979), 16715.]
          E.F. Beckenbach, W. Seidel, O. Szasz, Recurrent determinants of Legendre and
            ultaspherical polynomials. Duke Math. J. 18 (1951), 1–10. [MR 12 (1951),
            702.]
   354   355   356   357   358   359   360   361   362   363   364