Page 362 - Determinants and Their Applications in Mathematical Physics
P. 362

Bibliography  347

          L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for the degener-
            ate Monge–Amp`ere equation. Rev. Mat. Iberoam. 2 (1987), 19–27. [Zbl 611
            (1987), 35029.]
          E.R. Caianiello, Theory of coupled quantized fields. Nuovo Cimento Suppl. 14
            (1959), 177–191. [PA 63 (1960), 3912.]
          F. Calogero, Matrices, differential operators and polynomials. J. Math. Phys. 22
            (1981), 919–934. [PA 84 (1981), 99012.]
          F. Calogero, Determinantal representations of the classical polynomials. Boll.
            Unione Mat. Ital. VI Ser A 4 (1985), 407–414. [MR 87i: 33022; Zbl 581
            (1986), 33007.]
          F. Calogero, Ji Xiaoda, Solvable (nonrelativistic, classical) n-body problems on
            the line. I, J. Math. Phys. 34 (1993), 5659–5670. [PA (1994), 25257.]
          F. Calogero, Ji Xiaoda, Solvable n-body problems in multidimensions. J. Math.
            Phys. 35 (1994), 710–733. [PA (1994), 93634.]
          L. Carlitz, Hankel determinants and Bernoulli numbers. Tohoku Math. J. 5
            (1954), 272–276. [MR 15 (1954), 777.]
          L. Carlitz, A special determinant. Proc. Am. Math. Soc. 6 (1955), 270–272. [MR
            16 (1955), 999.]
          L. Carlitz, A special determinant. Am. Math. Monthly 62 (1955), 242–243. [MR
            16 (1955), 989.]
          L. Carlitz, A determinant. Am. Math. Monthly 64 (1957), 186–188. [MR 19
            (1958), 7.]
          L. Carlitz, Some cyclotomic determinants. Bull. Calcutta Math. Soc. 49 (1957),
            49–51. [MR 20 (1959), 3812.]
          L. Carlitz, A special determinant. [Problem 1333, 1958, 627] proposed by V.F.
            Ivanoff, Am. Math. Monthly. 66 (1959), 314–315.
          L. Carlitz, A determinant connected with Fermat’s last theorem. Proc. Am. Math.
            Soc. 10 (1959), 686–690. [MR 21 (1960), 7182.] Also, Proc. Am. Math. Soc.
            11 (1960), 730–733. [MR 22 (1961), 7974.].
          L. Carlitz, A generalization of Maillet’s determinant and a bound for the first
            factor of the class number. Proc. Am. Math. Soc. 12 (1961), 256–261. [MR
            22 (1961), 12093.]
          L. Carlitz, Some operational equations for symmetric polynomials. Duke Math.
            J. 28 (1961), 355–368. [MR 24A (1962), 20.]
          L. Carlitz, Some determinants of q-binomial coefficients. J. Reine Angew. Math.
            226 (1967), 216–220. [Zbl 162 (1969), 30.]
          L. Carlitz, F.R. Olsen, Maillet’s determinant. Proc. Am. Math. Soc. 6 (1955),
            265–269. [MR 16 (1955), 999.]
          D. Carlson, On some determinantal inequalitites. Proc. Am. Math. Soc. 19
            (1968), 462–466.
          D. Carlson, Polynomials satisfying a binomial theorem. J. Math. Anal. Applic.
            32 (1970), 543–548. [MR 42 (1971), 6288.]
          P. Cartier, A Course on Determinants, Conformal Invariance and String Theory,
            (Poiana Brasov 1987), Academic Press, Boston, 1989, pp. 443–557. [MR 91a:
            58200.]
   357   358   359   360   361   362   363   364   365   366   367