Page 364 - Determinants and Their Applications in Mathematical Physics
P. 364
Bibliography 349
L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.
P.C. Consul, Some factorable determinants. Fibonnacci Quart. 14 (1976), 171–
172. [MR 53 (1977), 5626.]
C.M. Cordes and D.P. Roselle, Generalized frieze patterns. Duke Math. J. 39
(1972), 637–648. [MR 47 (1974), 3209.]
A. Corduneanu, Natural generalization of Vandermonde determinants (Roma-
nian). Gaz. Mat. Perfect. Metod. Metodol. Nat. Inf. 11 (1990), 31–34. [Zbl
722 (1991), 15008.]
H. Cornille, Differential equations satisfied by Fredholm determinants and ap-
plication to the inversion formalism for parameter dependent potentials. J.
Math. Phys. 17 (1976), 2143–2157. [PA 80 (1977), 22437.]
H. Cornille, Generalization of the inversion equations and application to nonlinear
partial differential equations. I. J. Math. Phys. 18 (1977), 1855–1869. [PA 81
(1978), 8223.]
C.M. Cosgrove, New family of exact stationary axisymmetric gravitational fields
generalizing the Tomimatsu–Sato solutions. J. Phys. A 10 (1977), 1481–1524.
[MR 58 (1979), 20168.]
T.M. Cover, J.A. Thomas, Determinant inequalities via information theory. SIAM
J. Matrix Anal. Applic. 9 (1988), 384–392. [MR 89k: 15028.]
e
W.B. Craggs, The Pad´ table and its relations to certain algorithms of numerical
analysis. SIAM Rev. 14 (1972), 1–62.
T. Crilly, Half-determinants: An historical note [Pfaffians]. Math. Gaz. 66 (1982),
316.
T.W. Cusick, Identities involving powers of persymmetric determinants. Proc.
Camb. Phil. Soc. 65 (1969), 371–376. [MR 38 (1969), 5802.]
P. Dale, Axisymmetric gravitational fields: A nonlinear differential equation that
admits a series of exact eigenfunction solutions. Proc. Roy. Soc. London A
362 (1978) 463–468. [MR 80b: 83011.]
P. Dale, Functional determinants containing Vein’s numbers. Tech. Rep. TR
91001, Dept. Comp. Sci. & Appl. Math., Aston University, Birmingham, U.K,
1991.
P. Dale, P.R. Vein, Determinantal identities applicable to the solution of the
Benjamin–Ono and Kadomtsev–Petviashvili equations. Tech. Rep. TR 90004,
Dept. Comp. Sci. & Appl. Math., Aston University, Birmingham, U.K, 1990.
M.K. Das, On certain determinants for the classical polynomials. J. Annamalai
Univ. Part B. Sci. 26 (1965), 127-135. [MR 32 (1966), 1385.]
M.K. Das, On some determinants whose elements are orthogonal polynomials.
Math. Japan. 11 (1966), 19–25. [MR 34 (1967), 2965.]
M.K. Das, Determinants related to the generalized Laguerre polynomials. J.
Natur. Sci. Math. 9 (1969), 67–70. [Zbl 186 (1970), 105.]
K.M. Day, Toeplitz matrices generated by a Laurent series expansion of an arbi-
trary rational function. Trans. Am. Math.Soc. 206 (1975), 224–245. [MR 52
(1976), 708; Zbl 324 (1976), 47016.]
H. Dette, New identities for orthogonal polynomials on a compact interval. J.
Math. Anal. Applic. 179 (1993), 547–573.

