Page 73 - Determinants and Their Applications in Mathematical Physics
P. 73

58   4. Particular Determinants

          Exercises
          1. Prove the reduction formula
                                    n−1 	       
 n−1
                        (n)    (n−1)
                       A   = A           x n − x r     y s − y n  .
                        ij     ij
                                    r=1  x r − y n  s=1  x n − y s

                                    r =i          s=j
             Hence, or otherwise, prove that
                                        1    f(y j )g(x i )
                                A =                    ,
                                 ij
                                     x i − y j f (x i )g (y j )
                                 n
             where
                                          n

                                   f(t)=    (t − x r ),
                                         r=1
                                          n

                                   g(t)=    (t − y s ).
                                         s=1
          2. Let

                                                 f(x 1 )

                                                 f(x 2 )
                                                    .

                                                    .

                                                    .
                        V n =      [a ij ] n               ,
                                                    .
                                                    .

                                                    .

                                                 f(x n )


                             11      ...  ... 1    1

                                                       n+1


                                                      f(x 1 )


                                                      f(x 2 )
                                                        .

                                                        .

                                                        .
                       W n =          [a ij ] n                ,
                                                        .
                                                        .

                                                        .

                                                      f(x n )

                               −1 −1    ...  ... −1     1
                                                            n+1
             where

                                 a ij =  1 − x i y j  f(x i ),
                                       n  x i − y j

                                f(x)=    (x − y i ).
                                       i=1
             Show that
                                               n

                                  n(n+1)/2
                         V n =(−1)       X n Y n  (x i − 1)(y i +1),
                                              i=1
   68   69   70   71   72   73   74   75   76   77   78