Page 75 - Determinants and Their Applications in Mathematical Physics
P. 75

60   4. Particular Determinants

          where
                             i
                                 (i)
                       q ij =  U   P r (x j )
                                ir
                            r=1
                             i     r→i
                                 (i)      s−1
                          =    U      a sr x   (a sr =0, s>r)
                                ir        j
                            r=1    s=1
                             i       i
                                s−1        (i)
                          =    x       a sr U
                                j          ir
                            s=1     r=1
                               i
                                   s−1
                                 x
                          = U i
                                   j  δ si
                              s=1
                          = U i x i−1 .
                               j
          Hence, referring to (4.1.8),
                                                   i−1
                              |q ij | n = U 1 U 2 ··· U n )|x  |
                                                   j
                                         (i)
                                   = U n |U  | n X n .
                                         ij
          The theorem follows from (4.1.7) and (4.1.9).
          4.1.7  A Generalized Vandermondian
          Lemma.

                   N                N      n        n

                     y k x     =                      x       i−1    .
                                                             x
                        i+j−2                          s−1
                                             y k r     k s    k j
                        k
                                                                 n

                  k=1            k 1 ...k n =1  r=1  s=2
                             n
          Proof. Denote the determinant on the left by A n and put
                                    (k)     i+j−2
                                   a   = y k x
                                    ij
                                            k
          in the last identity in Property (g) in Section 2.3.1. Then,
                                      N

                                               i+j−2
                              A n =         y k j x     .
                                               k j
                                                    n
                                   k 1 ...k n =1
                                  j−1
                                 x   from column j of the determinant, 1 ≤ j ≤
          Now remove the factor y k j
                                  k j
          n. The lemma then appears and is applied in Section 6.10.4 on the Einstein
          and Ernst equations.
          4.1.8 Simple Vandermondian Identities
          Lemmas.
                      n−1

          a. V n = V n−1  (x n − x r ),  n > 1,  V (x 1 )=1
                      r=1
   70   71   72   73   74   75   76   77   78   79   80