Page 78 - Determinants and Their Applications in Mathematical Physics
P. 78

4.1 Alternants  63

          4.1.9  Further Vandermondian Identities
          The notation
                                 N m = {12 ··· m},
                                 J m = {j 1 j 2 ··· j m },
                                 K m = {k 1 k 2 ··· k m },

          where J m and K m are permutations of N m , is used to simplify the following
          lemmas.
          Lemma 4.5.

                                        N m           m
                                                          r−1
                      V (x 1 ,x 2 ,...,x m )=  sgn  N m  x   .
                                                          j r
                                        J m      J m  r=1
          Proof. The proof follows from the definition of a determinant in
          Section 1.2 with a ij → x j−1 .
                               i
          Lemma 4.6.


                                     = sgn  N m  V (x 1 ,x 2 ,...,x m ).
                   V x j 1  ,x j 2  ,...,x j m  J m
            This is Lemma (f) in Section 4.1.8 expressed in the present notation with
          n → m.

          Lemma 4.7.
                K m                            N m


                                     =   N m                       .
                   F x j 1  ,x j 2  ,...,x j m    F x j 1  ,x j 2  ,...,x j m
                 J m                     J m   J m
            In this lemma, the permutation symbol is used as a substitution operator.
                                            2
          The number of terms on each side is m .
                                                + x 2  and denote the left and
          Illustration. Put m =2, F(x j 1  ,x j 2  )= x j 1
                                                   j 2
          right sides of the lemma by P and Q respectively. Then,
                                  + x 2      + x 2
                          P = x k 1    + x k 2
                                     k 1        k 2

                                 1   2         2        2
                          Q =           (x 1 + x + x 2 + x )
                                               1
                                                        2
                                k 1  k 2
                             = P.
          Theorem.

             N m  m
                      r−1                                      2
          a.        x     V x j 1  ,x j 2  ,...,x j m  =[V (x 1 ,x 2 ,...,x m )] ,
                      j r
             J m  r=1

             K m  m
                      r−1                                          2
          b.        x     V x j 1  ,x j 2  ,...,x j m  = V x k 1  ,x k 2  ,...,x k m  .
                      j r
                 r=1
             J m
   73   74   75   76   77   78   79   80   81   82   83