Page 127 - Distributed model predictive control for plant-wide systems
P. 127

Local Cost Optimization-based Distributed Model Predictive Control     101


             of the entire closed-loop system under the control of unconstrained LCO-DMPC is derived as
                                 x(k)= Ax(k − 1)+ B  U(k − 1, P|k − 1)

                         X(k, P|k − 1)= S[Ax(k − 1)+ AX(k − 1, P|k − 2)
                                                   ̃ ̂
                          ̂
                                      + BU(k − 1, M|k − 1)+ BU(k − 2, M|k − 2)]
                                                           ̃
                                                ̂
                            U(k, M|k)=   x(k)+   X(k, P|k − 1)
                                                             d
                                      +   U(k − 1, M|k − 1)+   Y (k + 1, P|k)
                                 y(k)= Cx(k)

             where ̃ x(k|k) has been substituted with x(k) due to the assumption of fully accessible state.
             Defining the extended state

                                      ̂ T
                                                   T
                                                             T
                                 T
                        X (k) ≜ [x (k) X (k, P|k − 1) U (k, M|k) U (k − 1, M|k − 1)]
                          N
             the closed-loop state-space representation has the form
                                                         d
                                 X (k)= A X (k − 1)+ B Y (k + 1, P|k),
                                                      N
                                         N
                                            N
                                  N
                                  y(k)= C X (k)
                                         N  N
             where the closed-loop dynamic matrix
                                    A                      B  
                              ⎡                                         0 ⎤
                                   S A        SA          S B          SB
                              ⎢                 ̃                       ̃ ⎥
                         A =  ⎢ (         )                               ⎥
                          N                     ̃                        ̃
                              ⎢   A +   S A    SA   (  +  B  +  S B)    SB⎥
                              ⎢                                           ⎥
                              ⎣                           I Mn u        0 ⎦
             is equal to the matrix in Equation (5.40). This proves the theorem.
   122   123   124   125   126   127   128   129   130   131   132