Page 322 - Distributed model predictive control for plant-wide systems
P. 322

296                                                                References


            [70] V. Nevisti´ c and J. A. Primbs, “Finite receding horizon linear quadratic control: a unifying theory for stability
                and performance analysis,” Technical Report, CaltechCDSTR:1997.001, Pasadena, CA: California Institute of
                Technology, 1997.
            [71] H. Michalska and D. Q. Mayne, “Robust receding horizon control of constrained nonlinear systems,” IEEE
                Transactions on Automatic Control, vol. 38, pp. 1623–1633, 1993.
            [72] H. Michalska, “A new formulation of receding horizon stabilising control without terminal constraint on the
                state,” European Journal of Control, vol. 3, pp. 2–14, 1997.
            [73] H. Chen and F. Allgöwer, “Nonlinear model predictive control schemes with guaranteed stability,” in Nonlinear
                Model Based Process Control, Berlin: Springer, 1998, pp. 465–494.
            [74] D. Bao-Cang, Modern Predictive Control: Boca Raton, FL: CRC Press, 2010.
            [75] L. Ljung, System Identification, Berlin: Springer, 1998.
            [76] Y. Zhu, Multivariable System Identification for Process Control, Amsterdam: Elsevier, 2001.
            [77] B. Huang and S. L. Shah, Performance Assessment of Control Loops: Theory and Applications, Berlin:
                Springer, 1999.
            [78] J.-W. Lee, W. Hyun Kwon, and J. Choi, “On stability of constrained receding horizon control with finite terminal
                weighting matrix,” Automatica, vol. 34, pp. 1607–1612, 1998.
            [79] D. D. Siljak, Decentralized Control of Complex Systems, New York: Courier Dover Publications, 2011.
            [80] G. Weiss, Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, Cambridge, MA:
                MIT Press, 1999.
            [81] H. Sildir, Y. Arkun, B. Cakal, D. Gokce, and E. Kuzu, “Plant-wide hierarchical optimization and control of an
                industrial hydrocracking process,” Journal of Process Control, vol. 23, pp. 1229–1240, 2013.
            [82] Y. Xi, Dynamic Large-Scale Systems Introduction (in Chinese), Beijing: National Defense Industry Press,
                1988.
            [83] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, vol. 2, New York:
                Wiley, 2007.
            [84] M. Morari, Robust Process Control, Zurich: Morari, 1989.
            [85] W. Hu, W.-J. Cai , and G. Xiao, “Relative gain array for MIMO processes containing integrators and/or dif-
                ferentiators,” in 11th International Conference on Control Automation Robotics and Vision, December 7–10,
                Singapore, 2010, pp. 231–235.
            [86] E. Bristol, “On a new measure of interaction for multivariable process control,” IEEE Transactions on Auto-
                matic Control, vol. 11, pp. 133–134, 1966.
            [87] R. Wood and M. Berry, “Terminal composition control of a binary distillation column,” Chemical Engineering
                Science, vol. 28, pp. 1707–1717, 1973.
            [88] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: theory and practice – a survey,”
                Automatica, vol. 25, pp. 335–348, 1989.
            [89] X. Du, Y. Xi, and S. Li, “Distributed model predictive control for large-scale systems,” in Proceedings of the
                American Control Conference, vol. 4, June 25–27, Arlington, VA, 2001, pp. 3142–3143.
            [90] N. Motee and B. Sayyar-Rodsari, “Optimal partitioning in distributed model predictive control,” in Proceedings
                of the American Control Conference, vol. 6, June 4–6, 2003, pp. 5300–5305.
            [91] N. H. El-Farra and P. D. Christofides, “Coordinating feedback and switching for control of hybrid nonlinear
                processes,” AIChE Journal, vol. 49, pp. 2079–2098, 2003.
            [92] N. H. El-Farra, A. Gani, and P. D. Christofides, “Fault-tolerant control of process systems using communication
                networks,” AIChE Journal, vol. 51, pp. 1665–1682, 2005.
            [93] P. Mhaskar, A. Gani, and P. D. Christofides, “Fault-tolerant control of nonlinear processes: performance-based
                reconfiguration and robustness,” International Journal of Robust and Nonlinear Control, vol. 16, pp. 91–111,
                2006.
            [94] R. J. Patton, R. N. Clark, and P. M. Frank, Issues of Fault Diagnosis for Dynamic Systems, Berlin: Springer,
                2000.
            [95] J. Nash, “Non-cooperative games,” Annals of Mathematics, vol. 54, pp. 286–295, 1951.
            [96] Y. Xi, “New design method for discrete-time multi-variable predictive controllers,” International Journal of
                Control, vol. 49, pp. 45–56, 1989.
            [97] D. M. Prett and M. Morari, The Shell Process Control Workshop, Amsterdam: Butterworth-Heinemann, 1987.
            [98] A. N. Venkat, J. B. Rawlings, and S. J. Wright, “Stability and optimality of distributed model predictive con-
                trol,” in CDC-ECC’05: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control
                Conference, December 12–15, 2005, pp. 6680–6685.
   317   318   319   320   321   322   323   324   325   326   327