Page 761 - Dust Explosions in the Process Industries
P. 761

714  Index


            Minimum ignition temperature (continued)   Ogle/BeddowNetter theory. 287-288,  299-301
              industrial situation, 499             Ohmic energy dissipation, 404406
              laboratory tests, 499-504             Oil shale, 140
              research, 641                         Open flame hazards, 13,61
              theories for predicting, 424426       Open-circuit systems (for dust cloud generation),
            Moisture content                              244246
              data, 681                             Optical flame detectordsensors,  102
              influence of, 28                      Organic materials. See also under spec@  names
              role of, 28-29,  336,485487             burning velocity, 277-280
            Molding, encapsulation by. 567            combustion of, 7,29
            Monosized particles theory,               flame studies, 277-282
                  288-290.294                         particle size, 29
                                                      rates of pressure rise. 26-27
                                                      self-ignition, 403
            Nagy and Verakis venting theory, 463      thermal behavior, 403
            NagylConnNerakis  theories, 294-297     Oxidation reaction, cooling of, 59-60
            National Fire Protection Association (NFPA)   Oxidizer gas, oxygen content of, 39-44
              dust explosions in United States (1900-1956)   Oxygen concentration
                  per, 21-22                          data, maximum, 703
              gases versus dusts, 558                 for inerting, 599
              nomograph method, 43 1,446            Oxygen content influence in oxidizing gas,
              standards, 141, 553                         540-542
              vent scaling procedure, 455456,627    Oxygen detectors/sensors, 69
              vent sizing, 453, 455
              vented dust explosions and, 461
            Nature of dust explosions,  1-20        Partial inerting, 69, 625-626
              ignition sources, 10, 11-20           Particle dislodgment/entrainment
              materials that can cause, 5-7           in parallel airflow, 221-229
              phenomenon,  1-5                        in upwards airflow, 230-232
              range of dust concentrations, 7-10    Particle size, 2-3,  29-34
            Nomograph                                 analysis, 479480
              maximum experimental safe gap and, 351   data, 68 1, 682
              self-ignition, 390                      distribution, determining, 232, 233, 234
              vent sizing method, 431433,437,446,453   dust clouds and, 199
              vented dust explosions and, 461,462   Particles. flow pattern of, 584
            Nomura and Tanaka laminar burning in closed   Particles movement and inertial forces influence,
                  vessels, 298-299,  318                  557-558
            Nomura and Tanaka monosized particles theory.   Particles suspended in a gas, 213-221
                  288-290                             drag on, 215-218
            Nomura and Tanaka venting theory, 462463   movement of, 218-219
            Nordtest Fire 011 method, 3 10, 3 11      propagation of large-amplitude pressure waves
              MEC results, 522-523,  524                  in dust clouds, 221
            Nordtest Fire 016 method, 505-508         speed of sound in dust cloud, 219-220
            Norwegian vent sizing method, 434, 438    terminal settling velocity, 2 13-2 15
            Nozzle(s)                               Passive devices, explosion isolation, 75,77-78
              cyclone experiments and, 445          Peat dust
              Dahoe, circular, 585                    bag filters experiments, 448451
              dispersal of agglomerates by, 232-234,  241,   computer model, 364-366
                  242,333                             literature survey, 135-136
              Mache-Hebra type, 270                 Personal motivation (in explosion prevention),
              nomograph method and, 432                   118-120
              perforated annular, 585               Perspex
              rebound design, 531,532,585             cylinder, 541
              turbulence intensity experiment and, 457   glass tube, 488, 542
            Nusselt number, 258, 261                  window. 3 13
            Nusselt type flames, 268, 290           Pipelines, experiments in, 443444, 604
   756   757   758   759   760   761   762   763   764   765   766