Page 233 - Dynamics of Mechanical Systems
P. 233

0593_C07_fm  Page 214  Monday, May 6, 2002  2:42 PM





                       214                                                 Dynamics of Mechanical Systems


                       where the Greek subscripts α and β refer to the indices a, b, and c. We can obtain a direct
                       relationship between these matrices by using the transformation matrices introduced in
                       Chapter 2. Specifically, from Eq. (2.11.3) the elements of the transformation matrix between
                       the n  (i = 1, 2, 3) and the n  (α = 1, b, c) are:
                                               α
                           i
                                                        ⋅
                                                  S = nn     and    n α  =  S n i              (7.8.18)
                                                                        iα
                                                   iα
                                                          α
                                                        i
                       Let I be expressed in the forms:
                                                      I = I  n n = I  n n                      (7.8.19)
                                                          ij  i  j  αβ  α  β
                       Then, the I  and the I  are related by the expressions:
                                          αβ
                                ij
                                                I =  S SI     and    I  =  S SI                (7.8.20)
                                                 ij  iα  jβαβ      αβ  iα  jβ  ij

                        From Eqs. (7.8.10), (7.8.11), (7.8.12), and (7.8.18), we see that for our example the S  are:
                                                                                                 iα
                                                       22      0      2 2  
                                                 S =    24    3 2   − 24                   (7.8.21)
                                                  iα
                                                                          
                                                      − 64    1 2     64  

                       Then, in matrix form, Eq. (7.8.20) becomes:

                               92     − 3 4  3 3 4     22      0       2 2   3  0  0
                                                                                   
                               − 3 4  39 8     3 8    =    24  3 2   −  24 0    5   0 
                                                                              
                                                                             
                                                      −                64          6
                              33 4     3 8    37 8      64    1 2           0  0   
                                                                                               (7.8.22)
                                                         2 2    24     −  24
                                                                             
                                                         0      3 2     1 2  
                                                              −              
                                                         22      2 4     6 4  
                       and


                                  3   0  0    22     2 4   −  6 4   92   − 3 4  3 3 4
                                                                                      
                                           
                                  0  5   0 =    0     3 2     1 2     − 3 4  39 8  3 8  
                                  0   0  6      22  −  2 4  6 4    33 4  3 8  37 8   
                                                                     
                                                                                               (7.8.23)
                                                22      0      2 2 
                                                                   
                                                24     3 2   −  24 
                                               −                   
                                                64     1 2     64  

                       Finally, observe that the columns of the transformation matrix [S ] are the components
                                                                                  iα
                       of the principal unit vectors n , n , and n .
                                                           c
                                                 a
                                                    b
   228   229   230   231   232   233   234   235   236   237   238