Page 267 - Dynamics of Mechanical Systems
P. 267

0593_C08_fm  Page 248  Monday, May 6, 2002  2:45 PM





                       248                                                 Dynamics of Mechanical Systems












                       FIGURE 8.5.2
                       Free-body diagram of P.


                        Consider next the forces on P. The inertia force F  on P is:
                                                                    *
                                                           *
                                                                 a
                                                          F =−m RP                              (8.5.7)
                       The applied forces on P consist of a vertical weight (or gravity) force w given by:


                                                          w =−mg n                              (8.5.8)
                                                                  3
                       and a contact force C given by:

                                                       C = N  n + N  n                          (8.5.9)
                                                             11    r  r

                        (Recall that P is smooth, thus there is no friction or contact force in the n  direction.)
                                                                                         θ
                        These forces on P are exhibited in the free-body diagram of Figure 8.5.2. Then, from
                       d’Alembert’s principle, we have:

                                                              +
                                                          +
                                                                *
                                                        CwF = 0                                (8.5.10)
                       or

                                                 N n + N n − mgn −  m a =  0                    (8.5.11)
                                                                     RP
                                                   11    r  r    3
                       By substituting from Eq. (8.5.6), and by using Eq. (8.5.5) to express n  in terms of n  and
                                                                                    3            r
                       n , the governing equation becomes:
                        θ
                                                                       ˙
                                  N n + N n − mgcosθ n − mgsinθ n +  mr (  Ω sinθ +  2 mr θ ˙  cosθ  n 1 )
                                                                                 Ω
                                    11    r  r        r          q
                                                                           θ
                                                                 ˙˙
                                      +  mr (  θ 2 ˙  + mrΩ 2  sin 2  n +− (  mr +θ  mrΩ 2 sin cosθ n )  θ  =  0
                                                          r ) θ
                       or
                                               1 (
                                                    ˙
                                             N + mr sinΩ  θ +  2 mrΩθ ˙  cosθ  1 ) n
                                                r (
                                            +  N + mgcosθ + mrθ 2 ˙  + mrΩ  2  sin 2  r ) θ n  (8.5.12)
                                            +− (  mr +θ  mrΩ 2 sin cosθ −  mgsinθ n θ  =  0
                                                                          )
                                                  ˙˙
                                                             θ
   262   263   264   265   266   267   268   269   270   271   272