Page 324 - Dynamics of Mechanical Systems
P. 324

0593_C09_fm  Page 305  Monday, May 6, 2002  2:50 PM





                       Principles of Impulse and Momentum                                          305







                       FIGURE 9.10.4
                       Colliding particles with different
                       masses.
                       From the momentum conservation principle (see Eq. (9.7.1)), we have:

                                                   m v + mv =  m v +  mv ˆ                     (9.10.9)
                                                                  ˆ
                                                    AA     B B   AA    B B
                       Then, by solving Eqs. (9.10.8) and (9.10.9) for  ˆ v   and  ˆ v   we obtain:
                                                                 A      B
                                                       ) ( [
                                                                        e m v
                                               ˆ v = (1  M m − em v )  +(1 + )  B B]          (9.10.10)
                                               A          A    B  A
                                                    M m )[   e v )      em v ) B]
                                                                 +
                                              ˆ v = (1    (1 +  A ( m −                        (9.10.11)
                                               B         A           B    A
                       where M is defined as:

                                                         M =  m +  m                          (9.10.12)
                                                              A    B

                        Consider three special cases: (1) e = 0 , (2) e = 1 , and (3) m  = m .
                                                                             A    B
                       Case 1: e = 0 (Plastic Collision)
                       In this case, Eqs. (9.10.10) and (9.10.11) simplify to the expressions:
                                                  ˆ v = ( m v + m v ) ( m + )                 (9.10.13)
                                                                        m
                                                   A    A A   B B    A   B
                       and

                                                  ˆ v = ( m v + m v ) ( m + )                 (9.10.14)
                                                                        m
                                                   B    A A   B B    A   B
                       Observe that  ˆ v   =  ˆ v  , as expected with a plastic collision.
                                    A    B
                       Case 2: e = 1 (Elastic Collision)
                       In this case, Eqs. (9.10.10) and (9.10.11) become:

                                                                  B B]
                                               ˆ v = ( [ m − )  m v (  m + )
                                                            A
                                               A     A  m v + 2         A  m B                (9.10.15)
                                                          B
                                              ˆ v =[ 2 m v +( m − m v )  B] ( m + m )         (9.10.16)
                                               B     A A    B    A      A    B

                       Case 3: m  = m B
                                 A
                       In this case, Eqs. (9.10.10) and (9.10.11) become:

                                                       12
                                                  ˆ v = ( ) ( [ 1 − e v )  +(1 + e v ) ]      (9.10.17)
                                                   A            A        B
   319   320   321   322   323   324   325   326   327   328   329