Page 319 - Dynamics of Mechanical Systems
P. 319

0593_C09_fm  Page 300  Monday, May 6, 2002  2:50 PM





                       300                                                 Dynamics of Mechanical Systems


                       where the third and sixth equations are obtained by evaluating moments about Q and G ,
                                                                                                     1
                                                                        2
                       and where I is the central moment of inertia: (1/12)m  . Observe from the kinematics of
                       the bars that we can obtain the expressions:
                                     v =  v ,  v  =  v −(l  2)ω  ,  v =  v − lω  ,  v =  v −(l  2)ω  (9.8.19)
                                      1 x  2 x  2 y  0     2  Q   0    2   1 y  Q       1

                       Hence, from the first expressions of Eqs. (9.8.17), (9.8.18), and (9.8.19), we find:

                                                      v = v =  0,  Q =  0                      (9.8.20)
                                                       1 x  2 x    x

                                                            t        t
                       Also, by eliminating the linear impulses  ∫  Pdt  and  ∫ Qdt  from Eqs. (9.8.17) and (9.8.18),
                                                                        y
                       respectively, we obtain:             0        0

                                   lmv +  lmv  = ( l 2) mv +( 1 12) m l ω  −( l 2) mv +( 1 12) m l ω  (9.8.21)
                                                                 2
                                                                                       2
                                      1 y    2 y       2 y          2        1 y         1
                       and
                                                    ( l 2)mv 1y  = ( 1 12)m l ω 1              (9.8.22)
                                                                      2


                       Then, by substituting for v  and v  from Eqs. (9.8.19), we have:
                                              1y
                                                     2y
                                         v − lω  −(l  2)ω  +  v −(l  2)ω  = ( 1 2)[ v −(l  2)ω 2]
                                          0    2       1  0       2       0
                                          +( 112)lω 2 ( 1 2)[ v − lω 2 (l  2)ω 1] ( 112)lω  1  (9.8.23)
                                                                         +
                                                    −
                                                                 −
                                                           0
                       and
                                                ( 12)[ v 0  − lω 2  −(l  2)ω 1] ( 1 12)lω 1    (9.8.24)
                                                                    =

                       or, after simplification:

                                                   v = ( 512)lω  +( 11 12)lω
                                                    0         1          2                     (9.8.25)

                       and

                                                      v = ( 23)lω  + lω
                                                       0         1   2                         (9.8.26)

                       Finally, by eliminating v , we obtain:
                                            0
                                                  ω −  3 ω     or    ω = −( 1 3) ω             (9.8.27)
                                                    2    1      1         2

                       Observe that the bars rotate in opposite directions immediately after the impact and that
                       the left bar rotates clockwise.
   314   315   316   317   318   319   320   321   322   323   324