Page 88 - Dynamics of Mechanical Systems
P. 88

0593_C03_fm  Page 69  Monday, May 6, 2002  2:03 PM





                       Kinematics of a Particle                                                     69


                       By differentiating, the velocity of p in a reference frame R containing O is:

                                                V =  d p dt = ( dr dt) n + (  n dt)
                                                  P
                                                                     r d
                                                                   r     r
                                                   = ( dr dt) n +  × n d dt)
                                                                    r( θ
                                                           r   n r  z                           (3.8.3)
                                                              r d dt)
                                                   = ( dr dt) n + ( θ  n
                                                           r          θ
                       where, as before, dn /dt is evaluated using Eq. (3.5.7).
                                         r
                        Similarly, by differentiating again we obtain the acceleration of P as:
                                                       ( [
                                                                r d dt) ]
                                      a =  d V dt = d dt dr dt) n + ( θ  n θ
                                             P
                                       P
                                                              r
                                          = ( d r dt 2  n )  r ( dr dt d )(  n dt) +( dr dt d dt) n θ
                                                     +
                                                                          )( θ
                                             2
                                                               r
                                                        r d dt d )(
                                            + rd θ  dt 2 n + ( θ  n dt)
                                               2
                                                     θ
                                                                  θ
                                                                               d dt)
                                                                             θ
                                          =  d r dt 2 n +( dr dt d dt) n × n +( dr d )( θ  n
                                                          )( θ
                                            2
                                                  r               z   r               θ θ
                                                                )
                                                                2
                                            + ( r d 2 θ dt  2  θ )n  +  θ ( r d dt n  z  × n θ
                                                  )
                                                           )(
                                                                           )(
                                                 2
                                             2
                                          = (d r dt n r  +(dr dt d θ dt  θ )n  +(dr dt d θ dt  θ )n
                                                                )
                                                                2
                                            + ( rd 2 θ dt 2  θ )n  −  θ ( rd dt n  r
                       or
                                       p [  2  2  r d dt) 2  r ]  [  2  2  dr dt d dt) ]
                                      a =  d r dt − ( θ   n +  rd θ  dt + ( 2  )( θ  n θ        (3.8.4)
                        Suppose, as before, that we define ω and α to be:
                                                   θ
                                               ω = d dt and  α =  d ω dt =  d  2 θ dt 2         (3.8.5)
                       Thus, in terms of α and ω V  and a  are:
                                                P
                                                      P
                                                          V =ω    θ                             (3.8.6)
                                                            P
                                                               rn
                       and
                                             a = [ d r dt − rω 2  n ]  r [ r + ( dr dt)] n θ    (3.8.7)
                                                               + α
                                                                     2ω
                                                      2
                                                  2
                                              P
                       or, alternatively,
                                                 a = [ rrω 2  n ]  r [ α 2  r] n θ              (3.8.8)
                                                       −
                                                               +
                                                                 r + ω
                                                  P
                                                      ˙˙
                                                                        ˙
                       where the overdot represents differentiation with respect to time t.
   83   84   85   86   87   88   89   90   91   92   93