Page 210 - Electromagnetics
P. 210

hence
                                             c                     ∞  c
                                            ˜   (r, ) −   0          ˜   (r, ) −   0
                                                       d  + P.V.                d  = 0.        (4.33)
                                                 − ω                     − ω
                                       C 0 +C ω                  −∞
                        Here “P.V.” indicates that the integral is computed in the Cauchy principal value sense
                        (see Appendix A). To evaluate the integrals over C 0 and C ω , consider a function f (Z)
                        analytic in the lower half of the  Z-plane (Z  = Z r + jZ i ). If the point z lies on the real
                        axis as shown in Figure 4.1, we can calculate the integral

                                                                 f (Z)
                                                    F(z) = lim        dZ
                                                          δ→0    Z − z
                                                            jθ
                                                                             jθ
                        through the parameterization Z − z = δe . Since dZ = jδe dθ we have

                                               0  f z + δe jθ                 0
                                  F(z) = lim                 jδe  jθ     dθ = jf (z)  dθ = jπ f (z).
                                         δ→0  −π   δe  jθ                   −π
                        Replacing Z by   and z by 0 we can compute

                                        c
                                       ˜   (r, ) −   0
                                lim               d
                                 →0         − ω
                                     C 0

                                            1     ∞     − j t          ∞       − j t    1



                                                 σ(r, t )e  dt +    0  χ e (r, t )e  dt
                                            j  0                     0                  −ω
                                  = lim                                                    d
                                     →0
                                         C 0
                                           ∞
                                      π  0  σ(r, t ) dt

                                  =−                .
                                            ω
                        We recognize

                                                      ∞

                                                        σ(r, t ) dt = σ 0 (r)

                                                     0
                        as the dc conductivity and write
                                                      c
                                                     ˜   (r, ) −   0    πσ 0 (r)
                                              lim               d  =−        .
                                               →0         − ω             ω
                                                   C 0
                        If we replace Z by   and z by ω we get
                                                  c
                                                 ˜   (r, ) −   0     c
                                          lim               d  = jπ ˜  (r,ω) − jπ  0 .
                                          δ→0         − ω
                                               C ω
                        Substituting these into (4.33) we have
                                                                 c
                                                      1        ∞  ˜   (r, ) −   0  σ 0 (r)
                                       c
                                      ˜   (r,ω) −   0 =−  P.V.              d  +      .        (4.34)
                                                     jπ      −∞      − ω          jω
                                   c
                        If we write ˜  (r,ω) = ˜  (r,ω) + j ˜  (r,ω) and equate real and imaginary parts in (4.34)
                                                      c
                                            c
                        we find that
                                                                  c
                                                       1       ∞  ˜   (r, )
                                        c
                                       ˜   (r,ω) −   0 =−  P.V.          d ,                   (4.35)
                                                      π      −∞   − ω
                                                     1        ∞  ˜   (r, ) −   0  σ 0 (r)
                                                                c
                                            c
                                           ˜   (r,ω) =  P.V.               d  −      .         (4.36)
                                                     π              − ω           ω
                                                            −∞
                        © 2001 by CRC Press LLC
   205   206   207   208   209   210   211   212   213   214   215