Page 324 - Electromagnetics
P. 324

where   n is Neumann’s number (A.132) and where we have used (E.83) and (E.39) to
                        evaluate the integral.
                                                                                 ˜
                          We must also have continuityof the tangential magnetic field H φ at ρ = a.Thus
                                       ∞
                                      #    j

                                    −         [A n sin nφ + B n cos nφ] J (ka) =
                                                                  n
                                         Z TM
                                      n=0
                                       ∞                                       ˜
                                      #   j                                    E 0 − jk 0 a cos φ
                                    −       [C n sin nφ + D n cos nφ] H  (2)  (k 0 a) − cos φ  e
                                                                 n
                                         η 0                                   η 0
                                      n=0
                        must hold for all −π ≤ φ ≤ π. Byorthogonality
                                                             ˜
                              j              j               E 0     π        − jk 0 a cos φ

                          π     A m J (ka) − π  C m H  (2)  (k 0 a) =  sin mφ cos φe  dφ = 0  (4.359)
                                    m              m
                            Z TM             η 0             η 0  −π
                        and
                                                                    ˜
                                 j                j                E 0     π         − jk 0 a cos φ
                             2π     B m J (ka) − 2π  D m H  (2)           cos mφ cos φe     dφ.

                                       m               m  (k 0 a) =   m
                                Z TM             η 0               η 0  −π
                        The integral maybe computed as
                              π                           d     π

                              cos mφ cos φe − jk 0 a cos φ  dφ = j  cos mφe − jk 0 a cos φ  dφ = j2π j −m  J (k 0 a)
                                                                                            m
                            −π                         d(k 0 a)  −π
                        and thus
                                                                       ˜
                                         1             1              E 0
                                                             (2)            −m
                                           B m J (ka) −  D m H  (k 0 a) =    m j  J (k 0 a).  (4.360)
                                               m             m                 m
                                       Z TM           η 0              η 0
                          We now have four equations for the coefficients A n , B n , C n , D n . We maywrite (4.357)
                        and (4.359) as
                                              
              (2)
                                                 J m (ka)  −H m  (k 0 a)  A m
                                                   J (ka) −H m  (k 0 a)  C m
                                                η 0         (2)            = 0,               (4.361)
                                                    m
                                                Z TM
                        and (4.358) and (4.360) as
                                                                       ˜
                                      
              (2)    
        
      −m
                                         J m (ka)  −H m  (k 0 a)  B m  E 0   m j  J m (k 0 a)
                                           J (ka) −H m  (k 0 a)  D m  E 0   m j  J (k 0 a)
                                        η 0         (2)            =   ˜    −m        .       (4.362)
                                            m
                                        Z TM                                   m
                        Matrix equations (4.361) and (4.362) cannot hold simultaneouslyunless A m = C m = 0.
                        Then the solution to (4.362) is
                                                 $    (2)                            %
                                                    H m  (k 0 a)J (k 0 a) − J m (k 0 a)H m (2)  (k 0 a)

                                                             m
                                               −m
                                          ˜
                                    B m = E 0   m j                                   ,       (4.363)
                                                    η 0       (2)       (2)
                                                      J (ka)H m (k 0 a) − H m (k 0 a)J m (ka)
                                                   Z TM  m
                                                   $                                  %


                                                       η 0  J (ka)J m (k 0 a) − J (k 0 a)J m (ka)
                                           ˜
                                    D m =−E 0   m j −m  Z TM  m          m              .     (4.364)
                                                     η 0       (2)        (2)
                                                        J (ka)H m (k 0 a) − H m (k 0 a)J m (ka)
                                                     Z TM  m
                        With these coefficients we can calculate the field inside the cylinder (ρ ≤ a) from
                                                     ∞
                                                     #
                                           ˜
                                           E z (r,ω) =  B n (ω)J n (kρ) cos nφ,
                                                     n=0
                        © 2001 by CRC Press LLC
   319   320   321   322   323   324   325   326   327   328   329