Page 325 - Electromagnetics
P. 325

∞    jn  1
                                           ˜          #
                                           H ρ (r,ω) =−          B n (ω)J n (kρ) sin nφ,
                                                          Z TM k ρ
                                                       n=0
                                                       ∞    j
                                           ˜          #
                                           H φ (r,ω) =−       B n (ω)J (kρ) cos nφ,
                                                                    n
                                                          Z TM
                                                       n=0
                        and the field outside the cylinder (ρ > a) from
                                                          ∞
                                                         #          (2)
                                                − jk 0 ρ cos φ
                                          ˜
                                 ˜
                                E z (r,ω) = E 0 (ω)e   +     D n (ω)H  (k 0 ρ) cos nφ,
                                                                   n
                                                          n=0
                                                ˜
                                                                ∞
                                                E 0 (ω)  − jk 0 ρ cos φ  #  jn 1  (2)
                                ˜
                                H ρ (r,ω) =− sin φ   e        −          D n (ω)H n  (k 0 ρ) sin nφ,
                                                 η 0               η 0 k 0 ρ
                                                                n=0
                                                 ˜
                                                                 ∞
                                                E 0 (ω)  − jk 0 ρ cos φ  #  j
                                ˜
                                H φ (r,ω) =− cos φ   e        −       D n (ω)H  (2)  (k 0 ρ) cos nφ.
                                                                            n
                                                  η 0              η 0
                                                                n=0
                          We can easilyspecialize these results to the case of a perfectlyconducting cylinder by
                        allowing ˜σ →∞. Then

                                                      η 0     µ 0 ˜  c
                                                          =       →∞
                                                     Z TM      ˜ µ  0
                        and
                                                                        J m (k 0 a)
                                                                     −m
                                                                ˜
                                             B n → 0,   D n →−E 0   m j        .
                                                                         (2)
                                                                       H m (k 0 a)
                        In this case it is convenient to combine the formulas for the impressed and scattered fields
                        when forming the total fields. Since the impressed field is z-independent and obeys the
                        homogeneous Helmholtz equation, we mayrepresent it in terms of nonuniform cylindrical
                        waves:
                                                         ∞
                                                        #
                                              − jk 0 ρ cos φ
                                            ˜
                                       ˜ i
                                      E = E 0 e       =    [E n sin nφ + F n cos nφ] J n (k 0 ρ),
                                        z
                                                        n=0
                        where we have chosen the Bessel function J n (k 0 ρ) since the field is finite at the origin
                        and periodic in φ. Applying orthogonality we see immediately that E n = 0 and that
                                   2π                  π      − jk 0 ρ cos φ    −m
                                                  ˜
                                                                           ˜
                                      F m J m (k 0 ρ) = E 0  cos mφe  dφ = E 0 2π j  J m (k 0 ρ).
                                     m               −π
                                   ˜
                        Thus, F n = E 0   n j −n  and
                                                      ∞
                                                     #
                                                 ˜ i     ˜   −n
                                                E =     E 0   n j  J n (k 0 ρ) cos nφ.
                                                  z
                                                     n=0
                        Adding this impressed field to the scattered field we have the total field outside the
                        cylinder,
                                         ∞      −n
                                        #      n j
                                 ˜    ˜                      (2)              (2)
                                 E z = E 0    (2)    J n (k 0 ρ)H n  (k 0 a) − J n (k 0 a)H n  (k 0 ρ) cos nφ,
                                            H n (k 0 a)
                                         n=0
                        while the field within the cylinder vanishes. Then, by (4.350),
                                           ∞
                                      j   #      n j −n
                               ˜        ˜                      (2)              (2)
                               H φ =−   E 0     (2)    J (k 0 ρ)H n  (k 0 a) − J n (k 0 a)H n  (k 0 ρ) cos nφ.
                                                        n
                                      η 0     H n (k 0 a)
                                           n=0
                        © 2001 by CRC Press LLC
   320   321   322   323   324   325   326   327   328   329   330