Page 328 - Electromagnetics
P. 328

thus

                                                       (k 0 ρ 0 ) = C m H (2) (k 0 ρ 0 ).     (4.371)
                                                  A m J ν m
                                                                   ν m
                                                        ˜
                                                              ˜
                                                   ˜
                        The boundarycondition ˆ n 12 × (H 1 − H 2 ) = J s requires the surface current at ρ = ρ 0 .We
                        can write the line current in terms of a surface current densityusing the δ-function:
                                                             δ(φ − φ 0 )
                                                       ˜
                                                      J s = ˆ zI ˜   .
                                                                ρ 0
                        This is easilyverified as the correct expression since the integral of this densityalong
                                                                       ˜
                        the circular arc at ρ = ρ 0 returns the correct value I for the total current. Thus the
                        boundarycondition requires
                                                                        δ(φ − φ 0 )
                                            ˜
                                                         ˜
                                                +
                                            H φ (ρ ,φ,ω) − H φ (ρ ,φ,ω) = I ˜   .
                                                             −
                                                0            0
                                                                           ρ 0
                        By(4.370) we have
                                  ∞                        ∞
                                 #     j                  #      j                  δ(φ − φ 0 )

                               −    C n  sin ν n φH  (2)  (k 0 ρ 0 ) +  A n  sin ν n φJ (k 0 ρ 0 ) = I ˜
                                                ν n                      ν n
                                       η 0                      η 0                    ρ 0
                                 n=0                      n=0
                        and orthogonalityyields
                                            ψ j               ψ j             sin ν m φ 0

                                       − C m    H  (2)  (k 0 ρ 0 ) + A m  J (k 0 ρ 0 ) = I ˜  .  (4.372)
                                                 ν m               ν m
                                            2 η 0              2 η 0             ρ 0
                        The coefficients A m and C m thus obeythe matrix equation
                                        
            (2)
                                            (k 0 ρ 0 ) −H  (k 0 ρ 0 )        0
                                         J ν m                 A m
                                                     ν m            =

                                         J (k 0 ρ 0 ) −H  (2)  (k 0 ρ 0 )  C m  − j2I ˜  η 0 sin ν m φ 0
                                          ν m        ν m                    ψ   ρ 0
                        and are
                                                       j2I ˜  η 0 sin ν m φ 0  H (2) (k 0 ρ 0 )
                                                          ψ   ρ 0  ν m
                                         A m =                                    ,
                                                (2)                        (2)
                                                                             (k 0 ρ 0 )
                                               H ν m  (k 0 ρ 0 )J ν m  (k 0 ρ 0 ) − J (k 0 ρ 0 )H ν m
                                                                   ν m
                                                        j2I ˜  η 0 sin ν m φ 0  J ν m (k 0 ρ 0 )
                                                           ψ  ρ 0
                                         C m =                                    .
                                                (2)                        (2)
                                                                             (k 0 ρ 0 )
                                               H ν m  (k 0 ρ 0 )J ν m  (k 0 ρ 0 ) − J (k 0 ρ 0 )H ν m
                                                                   ν m
                        Using the Wronskian relation (E.93), we replace the denominators in these expressions
                        by 2/( jπk 0 ρ 0 ):
                                               A m =−I ˜  η 0 πk 0 sin ν m φ 0 H (2) (k 0 ρ 0 ),
                                                       ψ             ν m
                                               C m =−I ˜  η 0  πk 0 sin ν m φ 0 J ν m  (k 0 ρ 0 ).
                                                       ψ
                        Hence (4.368) gives

                                         &
                                           ∞   ˜  η 0          (2)
                                       −       I  πk 0   n J ν n (k 0 ρ)H  (k 0 ρ 0 ) sin ν n φ sin ν n φ 0 ,ρ < ρ 0 ,
                          ˜                n=0  2ψ             ν n
                          E z (ρ,φ,ω) =  &                                                    (4.373)
                                           ∞   ˜  η 0   (2)
                                       −       I  πk 0   n H     (k 0 ρ 0 ) sin ν n φ sin ν n φ 0 ,ρ > ρ 0 ,
                                           n=0  2ψ      ν n  (k 0 ρ)J ν n
                        © 2001 by CRC Press LLC
   323   324   325   326   327   328   329   330   331   332   333