Page 379 - Electromagnetics
P. 379

where G satisfies

                                            2  ∂    1 ∂
                                     
                 2
                                        2
                                       ∇ −       −        G(r, t|r , t ) =−δ(r − r )δ(t − t ).  (5.73)
                                                     2
                                             2
                                            v ∂t    v ∂t 2
                        In § A.1 we find that
                                                     δ(t − t − R/v)

                                              − (t−t )


                                 G(r, t|r , t ) = e               +
                                                         4π R

                                                                     2       2
                                                2  − (t−t )  I 1   (t − t ) − (R/v)      R


                                           +     e                             ,  t − t >  ,
                                              4πv           (t − t ) − (R/v) 2           v
                                                                    2
                        where R =|r − r |. For lossless media where σ = 0 this becomes


                                                              δ(t − t − R/v)

                                                 G(r, t|r , t ) =
                                                                  4π R
                        and thus
                                                       ∞       δ(t − t − R/v)





                                          ψ(r, t) =      S(r , t )           dt dV
                                                   V  −∞            4π R

                                                     S(r , t − R/v)

                                                =                dV .                          (5.74)
                                                   V     4π R
                          For lossless media, the scalar potentials and all rectangular components of the vector
                        potentials obey the same wave equation. Thus we have, for instance, the solutions to
                        (5.51):
                                                              i
                                                        µ     J (r , t − R/v)


                                              A e (r, t) =               dV ,
                                                       4π  V      R
                                                               i
                                                        1     ρ (r , t − R/v)


                                              φ e (r, t) =                 dV .
                                                       4π   V      R
                        These are called the retarded potentials since their values at time t are determined by the
                        values of the sources at an earlier (or retardation) time t − R/v. The retardation time is
                        determined by the propagation velocity v of the potential waves.
                          The fields are determined by the potentials:
                                                   i
                                                                             i

                                            1     ρ (r , t − R/v)    ∂ µ     J (r , t − R/v)



                               E(r, t) =−∇                    dV −                       dV ,
                                           4π   V      R            ∂t 4π  V      R
                                                  i

                                            1     J (r , t − R/v)

                               H(r, t) =∇ ×                   dV .
                                            4π  V      R
                        The derivatives may be brought inside the integrals, but some care must be taken when
                        the observation point r lies within the source region. In this case the integrals must be
                        performed in a principal value sense by excluding a small volume around the observation
                        point. We discuss this in more detail belowfor the frequency-domain fields. For details
                        regarding this procedure in the time domain the reader may see Hansen [81].
                        © 2001 by CRC Press LLC
   374   375   376   377   378   379   380   381   382   383   384