Page 471 - Electromagnetics
P. 471

Solution to wave equation by specification of wave amplitudes.   An alternative
                        to direct specification of boundary conditions is specification of the amplitude functions
                        ˜
                                     ˜
                        A(x, y,ω) and B(x, y,ω) or their inverse transforms A(x, y, t) and B(x, y, t). If we specify
                        the time-domain functions we can write ψ(x, y, z, t) as the inverse transform of (A.35).
                        For example, a wave traveling in the +z-direction behaves as
                                                                     +
                                             ψ(x, y, z, t) = A(x, y, t) ∗ F (x, y, z, t)       (A.42)
                        where
                                                                      √
                                                                         2
                                              F (x, y, z, t) ↔ e −κz  = e  −  z v  p +2 p .
                                                +
                        We can find F  +  using the following Fourier transform pair [26]):


                                                                        2
                               √                                  I 1 σ t − (x/v) 2
                              x  (p+ρ) −σ  2  − x          σ x  −ρt                  x
                                              ρ
                                     2
                            e −  v       ↔ e  v δ(t − x/v) +  e                   ,    < t.    (A.43)
                                                            v         t − (x/v) 2    v
                                                                       2
                        Here x is real and positive and I 1 (x) is the modified Bessel function of the first kind and
                        order 1. Outside the range x/v < t the time-domain function is zero. Letting ρ =   and
                        σ =   we find
                                            2

                                                  I
                                                                2
                                            z  − t 1 (  t − (z/v) )
                                                        2
                              +                                               − z
                                                                               v δ(t − z/v).
                             F (x, y, z, t) =  e                 U(t − z/v) + e                (A.44)
                                           v         t − (z/v) 2
                                                       2
                        Note that F +  is a real functions of time, as expected.
                          Substituting (A.44) into (A.42) and writing the convolution in integral form we have


                                                                      I
                                               ∞                z  − τ 1 (  τ − (z/v) )
                                                               2            2       2
                                ψ(x, y, z, t) =  A(x, y, t − τ)  e                     dτ +
                                                                           2
                                              z/v              v         τ − (z/v) 2
                                                           z

                                           + e − z            ,  z > 0.                        (A.45)
                                               v A x, y, t −
                                                           v
                        The 3-D Green’s function for waves in dissipative media
                          To understand the fields produced by bounded sources within a dissipative medium we
                        may wish to investigate solutions to the wave equation in three dimensions. The Green’s
                        function approach requires the solution to
                                       2  ∂    1 ∂
                                                  2
                                   2


                                  ∇ −       −         G(r|r ; t) =−δ(t)δ(r − r )
                                                2
                                        2
                                       v ∂t    v ∂t 2
                                                              =−δ(t)δ(x − x )δ(y − y )δ(z − z ).



                        That is, we are interested in the impulse response of a point source located at r = r .

                        We begin by substituting the inverse temporal Fourier transform relations
                                                         1     ∞
                                                                ˜        jωt
                                              G(r|r ; t) =     G(r|r ; ω)e  dω,
                                                        2π
                                                            −∞
                                                         1     ∞  jωt
                                                  δ(t) =       e   dω,
                                                        2π  −∞
                        obtaining
                                 1     ∞      2  2     1    2                       jωt
                                                               ˜


                                          ∇ − jω    −    ( jω)  G(r|r ; ω) + δ(r − r ) e  dω = 0.
                                2π               v 2  v 2
                                    −∞
                        © 2001 by CRC Press LLC
   466   467   468   469   470   471   472   473   474   475   476