Page 470 - Electromagnetics
P. 470

Here a is a positive, finite real quantity, and λ and µ are finite complex quantities.
                        Outside the range |t| < a the time-domain function is zero.
                          Letting a = z/v, µ = 0, and λ = 2  in the above expression, we find
                                            v  − t
                                                             2 2
                                                         2
                               Q(x, y, z, t) =  e  J 0  z − v t  [U(t + z/v) − U(t − z/v)]     (A.38)
                                            2        v
                        where U(x) is the unit step function (A.5). From (A.37) we see that
                                         ∞
                                                                        z/v
                          ψ 2 (x, y, z, t) =  g(x, y, t − τ)Q(x, y, z,τ) dτ =  g(x, y, t − τ)Q(x, y, z,τ) dτ.
                                        −∞                             −z/v
                        Using the change of variables u = t − τ and substituting (A.38), we then have
                                                    z

                                           v  − t  t+  v       u
                                                                                 2 2
                                                                        2
                              ψ 2 (x, y, z, t) =  e   g(x, y, u)e  J 0  z − (t − u) v  du.     (A.39)
                                           2      t−  z             v
                                                   v
                          To find ψ 1 we must compute ∂ Q/∂z. Using the product rule we have
                               ∂ Q(x, y, z, t)  v  − t          2  2 2    ∂
                                           =  e   J 0    z − v t     [U(t + z/v) − U(t − z/v)] +
                                   ∂z        2        v            ∂z
                                             v  − t                      ∂
                                                                                       2 2
                                                                                   2
                                           +  e   [U(t + z/v) − U(t − z/v)]  J 0  z − v t  .
                                             2                           ∂z    v
                        Next, using dU(x)/dx = δ(x) and remembering that J (x) =−J 1 (x) and J 0 (0) = 1,we

                                                                        0
                        can write
                                ∂ Q(x, y, z, t)  1  − t
                                            =   e   [δ(t + z/v) + δ(t − z/v)] −
                                     ∂z        2
                                                           √
                                                             2    2 2
                                               z  2  − t  J 1  v  z − v t
                                            −     e       √          [U(t + z/v) − U(t − z/v)].
                                               2v           z − v t
                                                                 2 2
                                                            2
                                                         v
                        Convolving this expression with f (x, y, t) we obtain
                                             1  − z          z     1     z       z

                                ψ 1 (x, y, z, t) =  e  v f x, y, t −  + e v f x, y, t +  −
                                             2               v    2              v
                                                                                2    2 2
                                             z  2  − t     t+  z v   u  J 1  v  z − (t − u) v
                                           −     e        f (x, y, u)e                    du.  (A.40)
                                                                                    2 2
                                                                           2
                                              2v        z                 z − (t − u) v
                                                      t−
                                                        v               v
                        Finally, adding (A.40) and (A.39), we obtain
                                            1  − z          z     1    z       z

                               ψ(x, y, z, t) =  e  v f x, y, t −  + e v f x, y, t +  −
                                            2               v    2             v

                                                                                    2 2
                                                                           2
                                                       z                  z − (t − u) v
                                              2
                                            z   − t  t+  v         u  J 1  v

                                          −    e         f (x, y, u)e                   du +
                                             2v       z                  z − (t − u) v
                                                                          2
                                                                                   2 2
                                                     t−
                                                      v               v
                                                     z
                                            v  − t  t+  v       u

                                                                         2
                                                                                  2 2
                                          +  e        g(x, y, u)e  J 0  z − (t − u) v  du.     (A.41)
                                            2     t−  z              v
                                                    v
                        Note that when   = 0 this reduces to
                                                                                  z
                                           1           z     1         z     v  t+  v

                              ψ(x, y, z, t) =  f x, y, t −  +  f x, y, t +  +      g(x, y, u) du,
                                           2           v    2          v    2  t−  z
                                                                                 v
                        which matches (A.32) for the homogeneous case where S = 0.
                        © 2001 by CRC Press LLC
   465   466   467   468   469   470   471   472   473   474   475