Page 465 - Electromagnetics
P. 465

Using Euler’s identity we can write

                                                       1         −e      e          jθ
                                                                π  − z sin θ j z cos θ
                                     lim    I (k z ) dk z =  lim                j e dθ.
                                                                       2 2 jθ
                                     →∞               2π  →∞  0        e

                        Thus, as long as z > 0 the integrand will decay exponentially as   →∞, and

                                                     lim    I (k z ) dk z → 0.
                                                     →∞


                        Similarly,  I (k z ) dk z → 0 when z < 0 if we close the semicircle in the lower half-plane.

                        Thus,
                                         ∞

                                           I (k z ) dk z =− lim  I (k z ) dk z − lim  I (k z ) dk z .  (A.22)
                                                       δ→0             δ→0
                                        −∞                   1               2
                        The integrals around the poles can also be computed by writing k z in polar coordinates.
                        Writing k z =−k + δe  jθ  we find

                                                    1             −e        ) jδe
                                                            0        jz(−k+δe jθ  jθ
                                  lim    I (k z ) dk z =  lim                           dθ
                                  δ→0              2π δ→0  π (−k + δe  jθ  − k)(−k + δe  jθ  + k)
                                        1
                                                    1     π  e − jkz   j  − jkz
                                                =             jdθ =−    e   .
                                                   2π  0  −2k         4k
                                                jθ
                        Similarly, using k z = k + δe , we obtain

                                                                    j  jkz
                                                   lim   I (k z ) dk z =  e  .
                                                   δ→0             4k
                                                         2
                        Substituting these into (A.22) we have
                                                       j  − jkz  j  jkz  1
                                             ˜ g(z,ω) =  e   −   e   =    sin kz,              (A.23)
                                                      4k       4k      2k
                        valid for z > 0.For z < 0, we close in the lower half-plane instead and get
                                                                1
                                                     ˜ g(z,ω) =−  sin kz.                      (A.24)
                                                               2k
                        Substituting (A.23) and (A.24) into (A.21) we obtain
                                         z
                                                      sin k(z − ζ)   1     ∞          sin k(z − ζ)
                          ˜                ˜                               ˜
                          ψ(x, y, z,ω) =   S(x, y,ζ,ω)          dζ −       S(x, y,ζ,ω)          dζ
                                                         2k          2k                  2k
                                        −∞                              z
                        where we have been careful to separate the two cases considered above. To make things
                        a bit easier when we apply the boundary conditions, let us rewrite the above expression.
                        Splitting the domain of integration we write

                                           0          sin k(z − ζ)      z          sin k(z − ζ)
                           ˜                ˜                           ˜
                           ψ(x, y, z,ω) =   S(x, y,ζ,ω)         dζ +    S(x, y,ζ,ω)          dζ −
                                                          2k                           k
                                         −∞                           0
                                          ∞           sin k(z − ζ)

                                            ˜
                                      −     S(x, y,ζ,ω)         dζ.
                                         0                2k
                        © 2001 by CRC Press LLC
   460   461   462   463   464   465   466   467   468   469   470