Page 464 - Electromagnetics
P. 464

Figure A.4: Contour used to compute inverse transform in solution of the 1-D wave
                        equation.


                        where
                                         1     ∞  z     jk z z   1     ∞     −1       jk z z
                                ˜ g(z,ω) =      ˜ g (k z ,ω)e  dk z =                e   dk z .
                                         2π                     2π  −∞ (k z − k)(k z + k)
                                             −∞
                        To compute this integral we use complex plane techniques. The domain of integration
                        extends along the real k z -axis in the complex k z -plane; because of the poles at k z =±k,
                        we must treat the integral as a principal value integral. Denoting
                                                               −e  jk z z
                                                  I (k z ) =             ,
                                                         2π(k z − k)(k z + k)
                        we have
                               ∞

                                  I (k z ) dk z = lim  I (k z ) dk z
                               −∞                 r
                                                  −k−δ              k−δ
                                          = lim      I (k z ) dk z + lim  I (k z ) dk z + lim  I (k z ) dk z
                                                −                 −k+δ              k+δ
                        where the limits take δ → 0 and   →∞. Our k z -plane contour takes detours around the
                        poles using semicircles of radius δ, and is closed using a semicircle of radius   (Figure
                        A.4). Note that if z > 0, we must close the contour in the upper half-plane.
                          By Cauchy’s integral theorem

                                       I (k z ) dk z +  I (k z ) dk z +  I (k z ) dk z +  I (k z ) dk z = 0.
                                      r            1            2
                        Thus
                                ∞

                                  I (k z ) dk z =− lim  I (k z ) dk z − lim  I (k z ) dk z − lim  I (k z ) dk z .
                                              δ→0             δ→0              →∞
                               −∞                   1               2
                        The contribution from the semicircle of radius   can be computed by writing k z in polar
                                            jθ
                        coordinates as k z =  e :
                                                     1               −e              jθ
                                                               π        jz e  jθ
                                   lim    I (k z ) dk z =  lim                    j e dθ.
                                   →∞               2π  →∞   0 ( e  jθ  − k)( e jθ  + k)


                        © 2001 by CRC Press LLC
   459   460   461   462   463   464   465   466   467   468   469