Page 472 - Electromagnetics
P. 472

By the Fourier integral theorem we have
                                                  2   2 ˜


                                                (∇ + k )G(r|r ; ω) =−δ(r − r ).                (A.46)
                        This is known as the Helmholtz equation. Here
                                                          1
                                                              2
                                                      k =    ω − j2ω                           (A.47)
                                                          v
                        is called the wavenumber.
                                                              ˜
                          To solve the Helmholtz equation we write G in terms of a 3-dimensional inverse Fourier
                        transform. Substitution of
                                                        1      ∞
                                            ˜                   ˜ r       jk·r  3
                                           G(r|r ; ω) =         G (k|r ; ω)e  d k,
                                                       (2π) 3
                                                             −∞
                                                        1      ∞
                                                                 jk·(r−r )  3
                                            δ(r − r ) =         e      d k,
                                                       (2π) 3
                                                             −∞
                        into (A.46) gives
                                 1     ∞    2 ˜ r      jk·r     2 ˜ r    jk·r  jk·(r−r )       3



                                         ∇   G (k|r ; ω)e  + k G (k|r ; ω)e  + e      d k = 0.
                               (2π) 3
                                     −∞
                        Here
                                                      k = ˆ xk x + ˆ yk y + ˆ zk z
                                                  2
                                            2
                                    2
                                        2
                               2
                        with |k| = k + k + k = K . Carrying out the derivatives and invoking the Fourier
                                    x   y   z
                        integral theorem we have
                                                        2 ˜ r
                                                    2
                                                 (K − k )G (k|r ; ω) = e − jk·r   .

                                  ˜
                        Solving for G and substituting it into the inverse transform relation we have
                                                        1     ∞    e jk·(r−r )
                                            ˜                                  3
                                           G(r|r ; ω) =                       d k.             (A.48)
                                                      (2π) 3  −∞ (K − k)(K + k)
                          To compute the inverse transform integral in (A.48) we write the 3-D transform variable
                        in spherical coordinates:
                                                                3
                                                                       2

                                       k · (r − r ) = KR cos θ,  d k = K sin θ dK dθ dφ,
                        where R =|r − r | and θ is the angle between k and r − r . Hence (A.48) becomes


                                                           2
                                              1     ∞    K dK         2π     π
                                 ˜                                             jK R cos θ
                                 G(r|r ; ω) =                          dφ     e      sin θ dθ
                                            (2π) 3  0  (K − k)(K + k)  0   0
                                               2      ∞  K sin(KR)
                                          =                          dK,
                                                2
                                            (2π) R  0  (K − k)(K + k)
                        or, equivalently,
                                                      1        ∞    e jK R
                                        ˜
                                       G(r|r ; ω) =                          KdK −
                                                   2 jR(2π) 2  −∞ (K − k)(K + k)
                                                      1        ∞    e − jkR
                                                −                            KdK.
                                                   2 jR(2π) 2  −∞ (K − k)(K + k)
                        © 2001 by CRC Press LLC
   467   468   469   470   471   472   473   474   475   476   477