Page 126 -
P. 126

2
                                                             ((
                                                                          ((
                                                           dy t n))    dy t n)) (∆ t) 2
                                                    ((
                                          ((
                                         ytn + 1 )) =  ytn)) +    (∆ t) +                  (4.45)
                                                             dt          dt 2    2
                             Recalling Eq. (4.41) and the total derivative expression of a function in two
                             variables as function of the partial derivatives, we have:
                                                    dy t n(( ))
                                                           =  ft n y t n( ( ), ( ( )))     (4.46)
                                                       dt

                                       2
                                      dy t n(( ))  =  d    dy t n(( )) 
                                        dt  2   dt   dt  
                                                                                           (4.47)
                                                ∂ ft n y t n ( )))  ∂ ft n y t n ( )))
                                                                ( ( ), (
                                                 ( ( ), (
                                              =              +             ft n y t n ( )))
                                                                            ( ( ), (
                                                      t ∂            y ∂
                              Combining Eqs. (4.45) to (4.47), it follows that to second order in (∆t):

                                     ytn( ( + 1 )) =  ytn( ( )) +  f tn ytn( ( ), ( ( )))(∆ t) +
                                          ∂ ft n y t n( ( ), ( ( )))  ∂ ft n y t n( ( ), ( ( )))  (  ∆ t) 2  (4.48)
                                        +              +              ft n y t n( ( ), ( ( ))) 
                                                t ∂            y ∂                 2


                             Next, let us Taylor expand k  to second order in (∆t). This results in:
                                                     2
                                                         t =
                                  f tn +
                                                        ∆
                              k = ( ( ) α∆ t y tn + β k )( )
                                            , ( ( ))
                               2                      1
                                                     ∂ ft n y t n ( )))  ∂ ft n y t n ( )))   (4.49)
                                                       ( ( ), (
                                                                          ( ( ), (
                                   ft n y t n ( ))) + (α ∆ t)     + (β k )           (∆ t)
                                    ( ( ), (
                                                                       1
                                                           t ∂                y ∂   
                             Combining Eqs. (4.42), (4.44), and (4.49), we get the other expression for
                             y(t(n + 1)), correct to second order in (∆t):
                               ytn( ( + 1 )) =  ytn( ( )) (+  a b f tn ytn) ( ( ), ( ( )))(+  ∆ t) +
                                       ∂ ft n y t n( ( ), ( ( )))  ∂ ft n y t n( ( ), ( ( )))  (4.50)
                                   + α b            (∆ t) + bβ            ft n y t n( ( ), ( ( )))(∆ t) 2
                                                        2
                                              t ∂                  y ∂
                              Now, comparing Eqs. (4.48) and (4.50), we obtain the following equalities:


                                                  ab+= 1; α b = 1 2/ ;  b = 1β             (4.51)






                             © 2001 by CRC Press LLC
   121   122   123   124   125   126   127   128   129   130   131