Page 121 -
P. 121

dt=(tfin-tin)/(N-1);
                                u=sin(t);
                                a=(1/(2*pi))*ones(1,N);
                                b=ones(1,N);
                                y(1)=0;
                                D(1)=(1/a(1))*(u(1)-b(1)*y(1));

                                   for k=2:N
                                   y(k)=((2*a(k)/dt+b(k))^(-1))*...
                                   (2*a(k)*y(k-1)/dt+a(k)D(k-1)+u(k));
                                   D(k)=(2/dt)*(y(k)-y(k-1))-D(k-1);
                                   end

                                plot(t,y,t,u,'--')



                             In-Class Exercise

                             Pb. 4.37 Plot the amplitude of y, and its dephasing from u, as a function of
                             a for large t.




                             Example 4.9
                             Find the first-order iterative scheme to solve the second-order differential
                             equation given by:

                                                      2
                                                     dy       dy
                                                  at()  2  +  bt()  + ct y() =  u t()      (4.34)
                                                     dt       dt
                                                            dy
                             with initial conditions yt( = 0 )  and    given.
                                                            dt t=0
                             Solution: Substituting the above first-order expression of the iterators for the
                             first-order and second-order numerical differentiators [respectively Eqs.
                             (4.16) and (4.30), into Eq. (4.34)], we deduce the following iterative equation
                             for y(k):

                                     ak ()  bk ()     −1
                             yk () =  4  + 2    + ck ()  ×
                                     (∆ t) 2  t ∆    
                                                                                           (4.35)
                                     ak ()  bk ()         ak ()                     
                              yk ( − 14  2  + 2    +  Dk ( − 1 4  + bk() +  a k D k() 2 ( − 1 ) +  u k() 
                                                           )
                                    )
                                                                      
                                    
                                                           
                                     (∆ t)   ∆ t            t ∆                     
                             © 2001 by CRC Press LLC
   116   117   118   119   120   121   122   123   124   125   126