Page 132 -
P. 132

B=3;          %stimulated emission coefficient
                                c=30;         %inverse lifetime of photon in cavity

                                yp(1,1)=p-gamma*y(1,1)-B*y(1,1)*y(2,1);
                                yp(2,1)=-c*y(2,1)+B*y(1,1)*y(2,1);
                             The script M-file to compute the laser dynamics and thus simulate the relax-
                             ation oscillations is:

                                tspan=[0 3];
                                yin=[1 1];
                                [t,y]=ode23('laser1',tspan,yin);

                                subplot(3,1,1)
                                plot(t,y(:,1))
                                xlabel('Normalized Time')
                                ylabel('N')

                                subplot(3,1,2);
                                plot(t,y(:,2))
                                xlabel('Normalized Time')
                                ylabel('n')

                                subplot(3,1,3);
                                plot(y(:,1),y(:,2))
                                xlabel('N')
                                ylabel('n')

                              As can be observed in Figure 4.7, the oscillations, as predicted, damp-out
                             after a while and the dynamical variables reach a steady state. The phase dia-
                             gram, shown in the bottom panel, is an alternate method to show how the
                             population of the atomic higher excited state and the photon number density
                             reach the steady state.

                             Question: Compute analytically from Eqs. (4.58) and (4.59), the steady-state
                             values for the higher excited state population and for the photon number,
                             and compare with the numerically obtained asymptotic values.



                             In-Class Exercise

                             Pb. 4.40 By changing the values of the appropriate parameters in the above
                             programs, find separately the effects of increasing or decreasing the value of


                             © 2001 by CRC Press LLC
   127   128   129   130   131   132   133   134   135   136   137