Page 170 -
P. 170

and


                                                       z −1  =  1 exp(  j − )θ             (6.41)
                                                            r


                             from which we can deduce Euler’s equations:

                                                          exp( ) exp(θ +j  −  ) θ j
                                                  cos( )θ =                                (6.42)
                                                                 2

                             and


                                                          exp( ) exp(θ −j  −  ) θ j
                                                   sin( )θ =                               (6.43)
                                                                  j 2


                             Example 6.3
                             Use MATLAB to generate the graph of the unit circle in the complex plane.

                             Solution: Because all points on the unit circle are equidistant from the origin
                             and their distance to the origin (their modulus) is equal to 1, we can generate
                             the circle by plotting the N-roots of unity, taking a very large value for N. This
                             can be implemented by executing the following script M-file.

                                N=720;
                                z=exp(j*2*pi*[1:N]./N);
                                plot(z)
                                axis square



                             In-Class Exercises
                             Pb. 6.20 Using the exponential form of the n-roots of unity, and the expres-
                             sion for the sum of a geometric series (given in the appendix), show that the
                             sum of these roots is zero.
                             Pb. 6.21 Compute the following sums:
                                a. 1 + cos(x) + cos(2x) + … + cos(nx)
                                b. sin(x) + sin(2x) + … + sin(nx)
                                c. cos(α) + cos(α + β) + … + cos(α + nβ)
                                d. sin(α) + sin(α + β) + … + sin(α + nβ)
                             Pb. 6.22 Verify numerically that for z = x + jy:


                             © 2001 by CRC Press LLC
   165   166   167   168   169   170   171   172   173   174   175