Page 166 -
P. 166

6.4.1  New Insights into Multiplication and Division of Complex Numbers
                             Consider the two complex numbers z  and z  written in polar form:
                                                                   2
                                                              1
                                                   z =  z (cos( )θ  +  j sin( ))θ          (6.17)
                                                    1   1     1        1

                                                   z =  z (cos(θ  ) +  j sin(θ  ))         (6.18)
                                                    2   2     2        2

                             Their product z z  is given by:
                                          1 2
                                                    (cos( )cos(θ  θ  ) − sin( )sin(θ  θ  ))  
                                         zz =  z z       1     2       1     2           (6.19)
                                          12    1  2                               
                                                                                 ))
                                                     +   j(sin( )cos(θ 1  θ 2 ) + cos( )sin(θ 1  θ 2 
                             But using the trigonometric identities for the sine and cosine of the sum of
                             two angles:

                                           cos(θ + θ  ) =  cos( )cos(θ  θ  ) sin( )sin(θ−  θ  )  (6.20)
                                                1   2       1     2       1     2

                                           sin(θ + θ  ) =  sin( )cos(θ  θ  ) cos( )sin(θ+  θ  )  (6.21)
                                                1  2       1      2       1     2
                             the product of two complex numbers can then be written in the simpler form:

                                             zz =  z z [cos(θ  + θ  ) +  j sin(θ  + θ  )]  (6.22)
                                              1 2   1  2     1   2        1  2

                             That is, when multiplying two complex numbers, the modulus of the product
                             is the product of the moduli, while the argument is the sum of arguments:

                                                         zz =  z z                         (6.23)
                                                          12    1  2

                                                  arg(zz  ) =  arg( ) arg( )z +  z         (6.24)
                                                       12        1       2
                              The above result can be generalized to the product of n complex numbers
                             and the result is:

                                                     zz … z =  z z …  z                    (6.25)
                                                      12   n    1  2   n

                                            arg(zz … z  ) = arg( ) arg( )z +  z +…+ ( )z   (6.26)
                                                 12   n       1       2        n
                             A particular form of this expression is the De Moivre theorem, which states
                             that:


                             © 2001 by CRC Press LLC
   161   162   163   164   165   166   167   168   169   170   171