Page 161 -
P. 161

That is, multiplying by j is geometrically equivalent to a counterclockwise
                             rotation by an angle of π/2.


                             6.2.3  Multiplication of Two Complex Numbers
                             The multiplication of two complex numbers follows the same rules of algebra
                                                         2
                             for real numbers, but considers j  = –1. This yields:
                                                 z =  a +  jb  and  z =  a +  jb
                                                  1  1    1        2   2   2
                             If:              ⇒ zz    = a a(  − b b )  + j a b(  + b a )    (6.6)
                                                   1 2   1 2   12     12   1 2



                             Preparatory Exercises
                             Solve the following problems analytically.
                             Pb. 6.2 Find  zz z z,  2 ,  2   for the following pairs:
                                           12  1  2
                                a. z =  j 3 ;  z = −  j
                                               1
                                    1       2
                                b. z =+    j;  z = −  j 3
                                       46
                                                  2
                                    1          2
                                c. z =  1  ( 24  j);  z =  1  ( 15−  j)
                                           +
                                    1             2
                                       3             2
                                d. z =  1  ( 24−  j);  z =  1  ( 15+  j)
                                    1             2
                                       3             2
                             Pb. 6.3 Find the real quantities m and n in each of the following equations:
                                a. mj + n(1 + j) = 3 – 2j
                                b. m(2 + 3j) + n(1 – 4j) = 7 + 5j
                             (Hint: Two complex numbers are equal if separately the real and imaginary
                             parts are equal.)

                             Pb. 6.4 Write the answers in standard form: (i.e., a + jb)
                                         2
                                a. (3 – 2j)  – (3 + 2j) 2
                                b. (7 + 14j) 7
                                          1    2
                                c.    (2 + j )   2  +  2j   

                                d. j(1 + 7j) – 3j(4 + 2j)

                             Pb. 6.5 Show that for all complex numbers z , z , z , we have the following
                                                                     1
                                                                        2
                                                                          3
                             properties:
                                              z z  = z z  (commutativity property)
                                              1 2
                                                    2 1
                                         z (z  + z ) = z z  + z z  (distributivity property)
                                                          1 3
                                          1
                                                3
                                                     1 2
                                            2
                             © 2001 by CRC Press LLC
   156   157   158   159   160   161   162   163   164   165   166