Page 164 -
P. 164

z −1  =  1  =  1     a −  jb   =  a −  jb  =  z 2  (6.10)
                                                                      2
                                                  z  ( a +  jb  )  a −  jb  a +  b 2  z
                             from which we deduce that:

                                                       1      Re( ) z
                                                  Re     =                                 (6.11)
                                                      z   [Re( )] + [Im( )] 2
                                                                2
                                                                       z
                                                              z
                             and
                                                      1
                                                     
                                                  Im  =      −  Im( ) z                  (6.12)
                                                      z   [Re( )] +  [Im( )] 2
                                                                2
                                                              z
                                                                       z
                              To summarize the above results, and to help you build your syntax for the
                             quantities defined in this section, edit the following script M-file and execute it:
                                z=3+4*j
                                zbar=conj(z)
                                modulz=abs(z)
                                modul2z=z*conj(z)
                                invz=1/z
                                reinvz=real(1/z)
                                iminvz=imag(1/z)



                             In-Class Exercises
                             Pb. 6.8 Analytically and numerically, obtain in the standard form an
                             expression for each of the following quantities:

                                           34+ j           3 + j        12− j  3 +  j
                                        a.          b.               c.      −    
                                           25+ j       ( 1− j)( 3 + j)   23+ j  2j  

                             Pb. 6.9 For any pair of complex numbers z  and z , show that:
                                                                         2
                                                                   1
                                                       z +  z = z +  z
                                                        1   2   1  2
                                                       z −  z = z −  z
                                                        1   2   1  2
                                                       zz =  zz
                                                        1  2  1  2
                                                        z (/  z )  =  z / z
                                                         1  2    1  2
                                                       z =  z





                             © 2001 by CRC Press LLC
   159   160   161   162   163   164   165   166   167   168   169