Page 171 -
P. 171

   z  n
                                                                            y
                                                              x
                                              lim1 +  = exp( )(cos( ) y +  j  sin( ))
                                              n→∞   n
                             For what values of y is this quantity pure imaginary?





                             Homework Problems

                             Pb. 6.23 Plot the curves determined by the following parametric represen-
                             tations:
                                a. z = 1 – jt  0 ≤ t ≤ 2
                                b. z = t + jt 2  –∞ < t < ∞
                                                          π     3 π
                                c. z = 2(cos(t) + j sin(t))  <<t
                                                          2      2
                                d. z = 3(t + j – j exp(–jt))  0 < t < ∞
                             Pb. 6.24 Find the expression y = f(x) and plot the families of curves defined
                             by each of the corresponding equations:
                                       1                1
                                a. Re  z   =  2  b. Im  z   =  2

                                c. Re( )z 2  =  4  d. Im( )z 2  =  4
                                    z − 3                  z −  3  π
                                e.      = 5        f. arg      =
                                    z + 3                  z +  3  4
                                    2
                                g.  z −=  3       h.  z = Im( z +) 4
                                       1
                             Pb. 6.25 Find the image of the line Re(z) = 1 upon the transformation z′ = z 2
                             + z. (First obtain the result analytically, and then verify it graphically.)
                                                                                    az  + b
                             Pb. 6.26 Consider the following bilinear transformation:  ′ =z
                                                                                    cz  + d
                             Show how with proper choices of the constants a, b, c, d, we can generate all
                             transformations of planar geometry (i.e., scaling, rotation, translation, and
                             inversion).

                             Pb. 6.27 Plot the curves C′ generated by the points P′ that are the images of
                             points on the circle centered at (3, 4) and of radius 5 under the transformation
                             of the preceding problem, with the following parameters:
                                Case 1: a = exp(jπ/4), b = 0, c = 0, d = 1
                                Case 2: a = 1, b = 3, c = 0, d = 1
                                Case 3: a = 0, b = 1, c = 1, d = 0




                             © 2001 by CRC Press LLC
   166   167   168   169   170   171   172   173   174   175   176