Page 226 -
P. 226

Basis:


                                            u  = exp( j2π nt) and  u = exp(  j − 2π nt)    (7.71)
                                             n                     n
                             Orthonormality of the basis vectors:


                                                                           1 if
                                                                           
                                                /
                                       u u   = ∫ 12  exp(  j − 2π mt)exp( j2π nt dt =   m =  n  (7.72)
                                                                      )
                                        m  n
                                                                           
                                               − /12                       0 if  m ≠  n
                             Decomposition rule:
                                                                ∞
                                                     ∞
                                                ϕ = ∑  cu  n  = ∑  c exp( j2 πnt)          (7.73)
                                                        n
                                                                   n
                                                    n =−∞      n =−∞
                             where


                                                            /
                                               c =  u ϕ  = ∫ 12  exp(  j − π2  nt ϕ) ( t dt)  (7.74)
                                                n    n
                                                           − /12
                             Parseval’s identity:

                                                                               ∞
                                                                    /
                                                     /
                                        ϕ  2  =  ϕ ϕ = ∫ 12  ϕ()t  ϕ()t dt  = ∫ 12  ϕ()t dt  = ∑  c n  2  (7.75)
                                                                         2
                                                                   12
                                                     12
                                                     − /           − /
                                                                              n =−∞
                             Example 7.9
                             Derive the analytic expression for the potential difference across the capacitor
                             in the RLC circuit of Figure 4.5 if the temporal profile of the source potential
                             is a periodic function, of period 1, in some normalized units.
                             Solution:
                             1. Because the potential is periodic with period 1, it can be expanded using
                             Eq. (7.73) in a Fourier series with basis functions {e j2πnt }:


                                                                       
                                                                     nt 
                                                             
                                                                 ˜
                                                                  nj2π
                                                    Vt() =  Re  ∑ V e                    (7.76)
                                                     s            s
                                                               n      
                                                             
                                                                       
                             where  V ˜ n   is the phasor associated with the frequency mode (2πn). (Note that
                                    s
                             n in the expressions for the phasors is a superscript and not a power.)
                             © 2001 by CRC Press LLC
   221   222   223   224   225   226   227   228   229   230   231