Page 231 -
P. 231


                                                  d 
                                          ∫ − 1 1  Px()   dx   (1−  x )  dP x ()   + ll ( +  1 ) ( )  0  (7.100)
                                                                         P x dx =
                                                          2
                                                              l
                                                             dx 
                                                                          l
                                             m
                                                                             
                                   Integrating the first term by parts, we obtain:
                                           
                                                                              
                                         ∫ − 1 1  (x −  ) 1  dP dx () x dP x  +  ( ll 1+  )P x P x dx =  0  (7.101)
                                                           ()
                                                     m
                                           
                                              2
                                                                       () () 
                                                           l
                                                                      m
                                                                           l
                                                                              
                                                          dx
                                   Similarly, we can write the ODE for P (x), and multiply on the left
                                                                    m
                                   by P (x); this results in the equation:
                                       l
                                                                               
                                          
                                        ∫ − 1 1 (x −  ) 1  dP dx  dx ()x  + mm 1+  ) ( )P x P m ( )x dx =  0  (7.102)
                                                    ()x dP
                                                         m
                                                    l
                                          
                                                                               
                                             2
                                                                (
                                                                       l
                                                                               
                                   Now, subtracting Eq. (7.102) from Eq. (7.101), we obtain:
                                              [ (mm + 1 ) ll−  ( + 1 )] ∫ 1  P l ()x P m ()x dx = 0  (7.103)
                                                               −1
                                   But because l ≠ m, this can only be satisfied if the integral is zero,
                                   which is the result that we are after.
                                6. Finally, we compute the normalization of the basis functions; that
                                   is, compute:
                                                      ∫ 1  Px Px dx() ()  =  N 2 l        (7.104)
                                                         l
                                                             l
                                                       −1
                                   From Eq. (7.90), we can write:
                                              Px() (− 2 l − 1 ) xP () (+  l − 1  P )  x () = 0  (7.105)
                                                              x
                                               l            l−1        l−2
                                   If we multiply this equation by (2l + 1)P (x) and subtract from it
                                                                        l
                                   Eq. (7.90), which we multiplied by (2l + 1)P (x), we obtain:
                                                                          l–1
                                         ll(2 +  ) 1 Px() (2+  l 1−  l )( −  P ) 1  ()  x
                                                2
                                                                   x P ()
                                                                 −
                                                                       −
                                                l                l 1  l 2
                                                                                          (7.106)
                                                            x P () −
                                             −  l ( +  12 l 1−  P )  ()  x  l l(2 −  P ) 1  2  x () =  0
                                                  )(
                                                          −
                                                               +
                                                                             −
                                                          l 1  l 1          l 1
                                   Now integrate over the interval [–1, 1] and using Eq. (7.103), we
                                   obtain, for l = 2, 3, …:
                             © 2001 by CRC Press LLC
   226   227   228   229   230   231   232   233   234   235   236