Page 271 -
P. 271

Example 8.14
                             Find the motion of an electron in the presence of a constant electric field and
                             a constant magnetic flux density perpendicular to it.

                             Solution: Let the electric field and the magnetic flux density be given by:

                                                           r
                                                           E =  E ê
                                                               03
                                                           r
                                                           B =  B ê
                                                               01
                             The matrix A is given in this instance by:

                                                           0   0      0
                                                                     
                                                      A = α 0   0    1
                                                                     
                                                           0   −1     0

                             while the vector B is still given by:

                                                                 0
                                                                
                                                          B = β 0
                                                                
                                                                 1

                                        At
                             The matrix e  is now given by:

                                                      1      0        0   
                                                      
                                                 e A t  = 0  cos(α t)  sin(α t) 
                                                                          
                                                      0   − sin(α t)  cos(α t  )

                             and the solution for the velocity vector is for this configuration given, using
                             Eq. (8.40), by:


                                          vt ()   1  0         0    v 0 ()
                                                                         1
                                           1
                                             
                                          vt () =  0  cos(α t)  sin(α t)   v 0 () +
                                                                            
                                            2                       2   
                                           vt ()  0   − sin(α t)  cos(α t)  v 0 ()
                                                                         3
                                           3
                                                 1       0             0       0
                                               t
                                             +   ∫   0  cos[α  t ( − τ )]  sin[α  t ( − τ )]   
                                                                                0 dτ
                                               0                               
                                                 0   − sin[α  t ( − τ )]  cos[α  t ( − τ)])]   β
                             leading to the following parametric representation for the velocity vector:
                             © 2001 by CRC Press LLC
   266   267   268   269   270   271   272   273   274   275   276