Page 273 -
P. 273

These matrices have the following properties, which can be easily verified by
                             inspection:


                                                                 2
                                                             2
                                                         2
                             Property 1:               σ =  σ =  σ = I                     (8.42)
                                                         1   2   3
                             where I is the 2 ⊗ 2 identity matrix.
                             Property 2:   σ σ + σσ =  σ σ +  σσ =  σσ +  σσ =  0          (8.43)
                                            1  2   2  1  1  3  3  1  2  3  3  2
                             Property 3:      σσ = j σ ;  σ σ = j σ ;  σ σ = j σ           (8.44)
                                               1  2    3   2  3   1    3  1   2
                                                     r r
                              If we define the quantity  σ⋅ v   to mean:
                                                    r r
                                                    σ ⋅=v  σ v  +  σ v  +  σ v             (8.45)
                                                           1 1  22    33
                                    r
                             that is,  v   = (v , v , v ), where the parameters v , v , v  are represented as the
                                                                           3
                                            2
                                                                        2
                                                                      1
                                               3
                                         1
                             components of a vector, the following theorem is valid.
                             THEOREM
                                                 r r r r     r r     r  r  r
                                                                         ×
                                                (σ ⋅ v )(σ ⋅ w ) =  ( ⋅v w ) + jI  σ  ( ⋅ v w )  (8.46)
                             where the vectors’ dot and cross products have the standard definition.
                             PROOF The left side of this equation can be expanded as follows:

                                r r r r
                               (σ ⋅ v )(σ ⋅ w ) =  (σ v  +  σ v  +  σ v  )(σ w  +  σ w  +  σ w  )
                                             1 1   22    33   1  1  2  2   3  3
                                         =  (σ v w  +  σ vw  +  σ vw  ) (σ σ+  v w  +  σ σ vw  ) +  (8.47)
                                             2
                                                     2
                                                             2
                                             1 1  1  2 2  2  3 3  3    1  2 1  2  2  1 2  1
                                              + (σ σ vw  +  σσ v w  ) (σσ+  vw +σ σ  vw )
                                                 1  3 1  3  3  1 3  1  2  3 32  3  3  2 3  2
                              Using property 1 of the Pauli’s matrices, the first parenthesis on the RHS of
                             Eq. (8.47) can be written as:

                                                                                   rr
                                    (σ v w + σ vw +  σ vw  ) = (v w + vw +  vw  ) =I  (v w⋅  )I  (8.48)
                                      2
                                              2
                                                      2
                                      1 1  1  2 2  2  3 3  3    1  1  2  2  3  3
                              Using properties 2 and 3 of the Pauli’s matrices, the second, third, and
                             fourth parentheses on the RHS of Eq. (8.47) can respectively be written as:

                                            (σσ vw +   σ σ v w  ) =  σ j  (v w −  v w  )   (8.49)
                                              1  2 1  2  2  1 2  1  3  1  2  2  1

                             © 2001 by CRC Press LLC
   268   269   270   271   272   273   274   275   276   277   278