Page 268 -
P. 268

 1  −3 t  4  t 2  2  t 2  2  −3 t
                                                      e   +  e      e −   e  
                                               e A t  =   5  5   5     5
                                                     2    2      4      1   
                                                      e −  e  −3 t  e  −3 t  +  e 
                                                                            t 2
                                                        t 2
                                                     5    5      5      5   
                             Therefore, the solution of the system of equations is

                                                                t 2
                                                            2 e −  e  −3 t 
                                                      Xt() =       t
                                                               t 2
                                                             e + 2 e  −3  
                                                                    dX
                             8.9.3  Solution of Equations of the Form   =  AX +  B(t)
                                                                    dt
                             Multiplying this equation on the left by e , we obtain:
                                                                 –At

                                                       dX   −A t    −A t
                                                     t
                                                    −A
                                                   e      =  e  AX +  e  B()               (8.36)
                                                                         t
                                                       dt
                             Rearranging terms, we write this equation as:

                                                       dX   −A t    −A t
                                                    −A
                                                      t
                                                                        t
                                                   e      − e  AX  =  e  B()               (8.37)
                                                       dt
                             We note that the LHS of this equation is the derivative of e –At X. Therefore, we
                             can now write Eq. (8.37) as:

                                                      d  −A t     −A t
                                                        e [  X  t ( )] =  e  B  t ( )      (8.38)
                                                     dt

                             This can be directly integrated to give:


                                                           t    t  −Aτ
                                                     −A
                                                       t
                                                   [e  X ( )]t  = ∫  e  B ( )dττ           (8.39)
                                                           0
                                                               0
                             or, written differently as:


                                                                         d )
                                                       t − X( )0
                                                  e −A t X()  = ∫ t  e −Aτ B(ττ           (8.40a)
                                                                 0
                             which leads to the standard form of the solution:


                             © 2001 by CRC Press LLC
   263   264   265   266   267   268   269   270   271   272   273