Page 56 -
P. 56

() b u+
                                                        () =
                                                       y 1  b u 1  1  ( ) a y−  1  ( ) 0
                                                                      0
                                                             0
                                                      
                                                               ( ) b u+
                                                                      0
                                            for k = 1 ,    =  bu 1  1  () a b u−  1 0  () 0
                                                             0
                                                          =   () (b+  −
                                                           bu 1     1  a b  ) ( )u 0
                                                             0
                                                                        1 0
                             Similarly,
                                           y()2 = b u() (2 +  b − a b u) ( )1 −  a b(  −  a b u) ( )0
                                                 0       1  10       1  1  10
                                   y( )3 =  b u( ) (3 +  b −  ab u) ( )2 −  a b(  − a b u) ( )1 +  a b(  −  ab u) ( )0
                                                                             2
                                          0      1   10       1  1  10       1  1  1 0
                             or, more generally, if:
                                          y(k) = w(0)u(k) + w(1)u(k – 1) + … + w(k)u(0)
                             then,

                                             w()0 =  b
                                                    0
                                                       −
                                                                          , , ,3 …
                                             wi() =− a ) ( b −  a b ) for  i =  12
                                                      i 1
                                                  (
                                                     1    1  1 0
                             In-Class Exercises
                             Pb. 2.17 Using the convolution-summation technique, find the closed form
                             solution for:

                                                y k() =  uk() −  1  uk( − 1 ) +  1  y k( − 1 )
                                                           3         2

                                                           uk() = 0  for  negative
                                                                        k
                             and the input function given by:  
                                                           uk() = 1  otherwise
                             Compare your analytical answer with the numerical solution.

                             Pb. 2.18 Show that the resultant weight functions for two systems are,
                             respectively:

                                          w(k) = w (k) + w (k)  if connected in parallel
                                                  1
                                                         2
                                                k
                                         wk() = ∑ w i w k i( )  1 ( −  )  if connected in cascade
                                                   2
                                               i=0




                             © 2001 by CRC Press LLC
   51   52   53   54   55   56   57   58   59   60   61