Page 58 -
P. 58

k
                                                    vk( + 1 ) = ∑  Bj()  +  C              (2.37)
                                                             j=0  lj( + 1 )

                             where C is a constant.

                             Example 2.5
                             Find the general solution of the following first-order difference equation:

                                                               2
                                                      y(k + 1) – k y(k) = 0
                             with y(1) = 1.

                             Solution:


                                             2
                                                                     2
                                                     2
                                    yk ( + 1 ) =  k y k ( ) =  k k ( − 1 )  2 y k ( − 1 ) =  k k ( − 1 ) 2  k ( − 2 ) 2  yk ( − 2 )
                                           =  kk ( − 1 ) 2  k ( − 2 ) 2  k ( − 3 ) 2  y k ( − 3 ) = …
                                             2
                                           =  kk ( − 1 ) 2  k ( − 2 ) 2  k ( − 3 ) … 2  2  2 y() =1  k ( !) 2 2
                                                                2
                                             2
                                                                   ( ) () 1
                             Example 2.6
                             Find the general solution of the following first-order difference equation:

                                                   (k + 1)y(k + 1) – ky(k) = k 2

                             with y(1) = 1.

                             Solution: Reducing this equation to the standard form, we have:


                                                 Ak () =−  k  and  Bk =  k  2
                                                                   ()
                                                        k + 1           k + 1
                             The homogeneous solution is given by:


                                                    lk( + 1 ) =  k!  =  1
                                                            k ( + 1 )!  k ( + 1 )

                              The particular solution is given by:


                                             k
                                            ∑    j 2           ∑   2      k ( + 12 k + 1  k )
                                                                k
                                                                              )(
                                    vk( + 1 ) =      j ( + 1 ) + C =  j + C =         +  C
                                             j=1  j ( + 1 )    j=1             6
                             © 2001 by CRC Press LLC
   53   54   55   56   57   58   59   60   61   62   63