Page 234 - Elements of Distribution Theory
P. 234

P1: JZX
            052184472Xc07  CUNY148/Severini  May 24, 2005  3:59





                            220             Distribution Theory for Functions of Random Variables

                            Itfollowsthat X (m) ,themthorderstatistic,hasadiscretedistributionwithfrequencyfunction

                            p (m) (t)
                                m                      n+k−m
                                     n             t m−k     n − m + k  j     tj     (t+1)(n−m+k− j)
                             =            [1 − (1 − θ) ]               θ (1 − θ) (1 − θ)
                                   m − k                         j
                               k=1                      j=k
                                m                                     n+k−m                   j
                                     n             t m−k     (t+1)(n−m+k)     n − m + k     θ
                             =            [1 − (1 − θ) ]  (1 − θ)                              .
                                   m − k                                         j      1 − θ
                               k=1                                      j=k
                            Example 7.24 (Uniform random variables). Let X 1 , X 2 ,..., X n denote independent,
                            identically distributed random variables, each distributed according to the uniform dis-
                            tribution on (0, 1). The density function of this distribution is I {0<t<1} and the distribution
                            function is t,0 < t < 1. It follows that X (m) , the mth order statistic, has an absolutely
                            continuous distribution with density function

                                                      n − 1  m−1      n−m

                                            p (m) (t) = n   t   (1 − t)  , 0 < t < 1.
                                                      m − 1
                            This distribution is known as a beta distribution with parameters m and n − m + 1.
                              In general, a beta distribution with parameters α and β is an absolutely continuous
                            distribution with density function
                                                 (α + β)  α−1     β−1
                                                        x   (1 − x)  , 0 < x < 1;
                                                 (α) (β)
                            here α> 0 and β> 0 are not restricted to be integers.
                              By Theorem 7.6, X (m) has distribution function
                                                   n
                                                       n  i     n−i
                                                         t (1 − t)  , 0 < t < 1.
                                                       i
                                                  i=m
                            Hence, we obtain the useful result
                                               t                  n
                                     n − 1     m−1      n−m          n  i     n−i
                                  n           u   (1 − u)   du =       t (1 − t)  , 0 < t < 1.
                                     m − 1  0                    i=m  i
                            Pairs of order statistics
                            An approach similiar to that used in Theorem 7.6 can be used to determine the distribution
                            function of a pair of order statistics.

                            Theorem 7.8. Let X 1 , X 2 ,..., X n denote independent, identically distributed, real-valued
                            random variables each with distribution function F. Let X (1) , X (2) ,..., X (n) denote the
                            order statistics of X 1 ,..., X n and let m < r.
                              Then
                             Pr(X (m) ≤ s, X (r) ≤ t)
                                   n    n−i          n       i           i− j       n−i− j
                               
                                   i=m                   F(s) [F(t) − F(s)]  [1 − F(t)]    if s < t
                                        j=max(0,r−i) i, j,n−i− j
                             =                                                                    .
                                 Pr(X (r) ≤ t)                                             if s ≥ t
                               
   229   230   231   232   233   234   235   236   237   238   239