Page 237 - Elements of Distribution Theory
P. 237

P1: JZX
            052184472Xc07  CUNY148/Severini  May 24, 2005  3:59





                                                    7.5 Order Statistics                     223

                        Theorem 7.10. Let X 1 , X 2 ,..., X n denote independent, identically distributed, real-valued
                        random variables, each with an absolutely continuous distribution with density p and
                        distribution function F. Let X (1) , X (2) ,..., X (n) denote the order statistics of X 1 ,..., X n
                        and let m < r.
                          The distribution of (X (m) , X (r) ) is absolutely continuous with density function

                                   n!                m−1             r−m−1         n−r
                                                F(x m )  [F(x r ) − F(x m )]  [1 − F(x r )]  p(x m )p(x r ),
                         (m − 1)!(r − m − 1)!(n −r)!
                        for x m < x r .

                        Proof. The density function of (X (1) , X (2) ,..., X (n) )isgiven by
                                      n!p(x 1 ) ··· p(x n ), −∞ < x 1 < x 2 < ··· < x n < ∞.

                        The marginal density of (X (m) , X (r) ), m < r,is therefore given by
                            ∞      ∞

                        n!    ···    p(x 1 ) ··· p(x n )I {x 1 <x 2 <···<x n } dx 1 ··· dx m−1 dx m+1 ··· dx r−1 dx r+1 ··· dx n .
                            −∞    −∞
                          Note that

                                     I {x 1 <x 2 <···<x n } = I {x 1 <···<x m } I {x m <x m+1 <···<x r } I {x r <x r+1 <···<x n } .
                        By Lemma 7.1,
                           ∞      ∞                                              1         m−1

                             ···    p(x 1 ) ··· p(x m−1 )I {x 1 <x 2 <···<x m−1 <x m } dx 1 ··· dx m−1 =  F(x m )  ,
                                                                              (m − 1)!
                          −∞     −∞
                                  ∞      ∞

                                    ···    p(x m+1 ) ··· p(x r−1 )I {x m <x m+1 <···<x r−1 <x r } dx m+1 ··· dx r−1
                                  −∞    −∞
                                         1                   r−m−1
                                  =            [F(x r ) − F(x m )]  ,
                                     (r − m − 1)!
                        and
                                     ∞     ∞

                                       ···    p(x r+1 ) ··· p(x n )I {x r <x r+1 <···<x n−1 <x n } dx r+1 ··· dx n
                                    −∞     −∞
                                          1            n−r
                                     =        [1 − F(x r )]  .
                                       (n − r)!
                        The result follows.


                        Example 7.25 (Order statistics of exponential random variables). Let X 1 , X 2 ,..., X n
                        denote independent, identically distributed random variables, each with an exponential
                        distribution with parameter λ> 0; this distribution has density function λ exp(−λx), x > 0,
                        and distribution function 1 − exp(−λx), x > 0.
                          According to Theorem 7.9, (X (1) ,..., X (n) ) has an absolutely continuous distribution
                        with density function

                                                  n


                                        n
                                     n!λ exp −λ     x j , 0 < x 1 < x 2 < ··· < x n < ∞.
                                                 j=1
   232   233   234   235   236   237   238   239   240   241   242