Page 88 - Elements of Distribution Theory
P. 88

P1: JZP
            052184472Xc03  CUNY148/Severini  May 24, 2005  2:34





                            74                         Characteristic Functions

                            and that
                                                         ∞

                                                    lim    g(x) cos(tx) dx = 0.
                                                   t→∞
                                                        −∞
                            These follow immediately from the Riemann-Lebesgue Lemma.
                              Now consider part (ii). Note that it suffices to show that

                                                  1         T     ∞
                                          g(x 0 ) =  lim         g(x) cos(t(x − x 0 )) dx dt    (3.2)
                                                 2π T →∞  −T  −∞
                            and
                                                     T     ∞
                                              lim         g(x) sin(t(x − x 0 )) dx dt = 0.      (3.3)
                                              T →∞  −T  −∞
                              Consider (3.3). Changing the order of integration,

                                      T     ∞                       ∞       T
                                          g(x) sin(t(x − x 0 )) dx dt =  g(x)  sin(t(x − x 0 )) dt dx.
                                    −T  −∞                        −∞      −T
                            Equation (3.3) now follows from the fact that, for T > 0,

                                                        T
                                                         sin(t(x − x 0 )) dt = 0.
                                                      −T
                              Now consider (3.2). Again, changing the order of integration, and using the change-of-
                            variable u = x − x 0 ,

                                      T     ∞                       ∞       T
                                          g(x) cos(t(x − x 0 )) dx dt =  g(x)  cos(t(x − x 0 )) dt dx
                                    −T  −∞                        −∞      −T

                                                                   ∞         sin(Tu)
                                                               =     g(u + x 0 )    du.
                                                                                u
                                                                  −∞
                            It now follows from Section A3.4.11 that
                                                    ∞         sin(Tu)

                                              lim     g(u + x 0 )    du = g(x 0 ).
                                              T →∞              u
                                                   −∞
                              The following theorem applies this result to characteristic functions and shows that the
                            distributionfunctionofareal-valuedrandomvariablemaybeobtainedfromitscharacteristic
                            function, at least at continuity points of the distribution function.

                            Theorem 3.3. Let X denote a real-valued random variable with distribution function F
                            and characteristic function ϕ.IfF is continuous at x 0 , x 1 ,x 0 < x 1 , then
                                                    1         T  exp{−itx 0 }− exp{−itx 1 }
                                     F(x 1 ) − F(x 0 ) =  lim                       ϕ(t) dt.
                                                    2π T →∞  −T          it

                            Proof. Fix x. Define

                                                     h(y) = F(x + y) − F(y).
   83   84   85   86   87   88   89   90   91   92   93