Page 93 - Elements of Distribution Theory
P. 93

P1: JZP
            052184472Xc03  CUNY148/Severini  May 24, 2005  2:34





                                                    3.2 Basic Properties                      79

                                           (2)
                                                             (2)
                          Now suppose that ϕ (0) exists. Writing ϕ (0) in terms of the first derivative ϕ and

                        then writing ϕ in terms of ϕ,wehave

                                                        ϕ(h) − 2ϕ(0) + ϕ(−h)
                                              (2)
                                             ϕ (0) = lim                   .
                                                    h→0         h 2
                        Now,
                          ϕ(h) − 2ϕ(0) + ϕ(−h) = E[exp(ihX) − 2 + exp(−ihX)]
                                                                                           2
                                                                         2
                                             = E{[exp(ihX/2) − exp(−ihX/2)] }= E{[2i sin(hX/2)] }.
                        Hence,

                                                                      2
                                                           [i sin(hX/2)]  2
                                              (2)
                                             ϕ (0) = lim E             X
                                                     h→0      (hX/2) 2
                        and
                                                             sin(hX/2)  2
                                                                     2
                                               (2)
                                             |ϕ (0)|= lim E           X   .
                                                      h→0     (hX/2) 2
                        By Fatou’s Lemma,
                                             sin(hX/2)  2            sin(hX/2)  2
                                                     2                       2
                                      lim E           X   ≥ E lim inf         X
                                      h→0     (hX/2) 2          h→0   (hX/2) 2
                        and since
                                                         sin(t)
                                                      lim     = 1
                                                      t→0  t
                        we have that
                                                        2     (2)
                                                     E(X ) ≤|ϕ (0)|
                                 2
                        so that E(X ) < ∞.
                          The general case is similar, but a bit more complicated. Suppose that ϕ (2m) (0) exists for
                        some m = 1, 2,.... Since

                                                  ϕ (2m−2) (h) − 2ϕ (2m−2) (0) + ϕ (2m−2) (−h)
                                      (2m)
                                     ϕ   (0) = lim                                ,
                                              h→0                h 2
                        it may be shown by induction that
                                                         2m
                                                      1        j    2m
                                         (2m)
                                        ϕ   (0) = lim      (−1)      ϕ(( j − m)h).
                                                 h→0 h 2m         j
                                                         j=0
                        Furthermore,
                                2m                        
  2m
                                      j  2m                        j  2m
                                  (−1)      ϕ(( j − m)h) = E   (−1)      exp[i( j − m)hX]
                                         j                            j
                                j=0                         j=0
                                                                                   2m
                                                       = E{[exp(ihX/2) − exp(−ihX/2)] }
                                                                       2m
                                                       = E{[2i sin(hX/2)] }.
   88   89   90   91   92   93   94   95   96   97   98