Page 99 - Elements of Distribution Theory
P. 99

P1: JZP
            052184472Xc03  CUNY148/Severini  May 24, 2005  2:34





                                         3.3 Further Properties of Characteristic Functions   85

                        function of this distribution function is
                                                       2
                                                      σ  2
                                          ϕ(t) = exp −  t + iµt ,  ∞ < t < ∞.
                                                      2
                        Note that
                                                                         √
                                           ∞          ∞
                                                              σ  2        (2π)
                                                               2
                                             |ϕ(t)|≤    exp −   t   dt =      ;
                                                               2           σ
                                          −∞         −∞
                        hence, by Theorem 3.8, the distribution of X has density function
                        p(x)
                             1     ∞      σ  2  2
                          =         exp −   t − i(x − µ)t  dt
                             2π           2
                                 −∞
                             1     ∞      σ  2  2           2        2  4            1        2
                          =         exp −   [t − 2i(x − µ)t/σ − (x − µ) /σ ] dt exp −  (x − µ)
                             2π           2                                         2σ 2
                                 −∞
                                1          1        2
                          =   √     exp −     (x − µ)  ,  −∞ < x < ∞.
                             σ (2π)       2σ 2
                        It follows that this is the density of the normal distribution with parameters µ and σ.

                        Example 3.13 (Ratio of normal random variables). Let Z 1 and Z 2 denote independent
                        scalar random variables such that each Z j , j = 1, 2, has a standard normal distribution.
                        Define a random variable X by X = Z 1 /Z 2 . The characteristic function of this distribution
                        is given by
                                ϕ(t) = E[exp(it Z 1 /Z 2 )] = E{E[exp(it Z 1 /Z 2 )|Z 2 ]}, −∞ < t < ∞.
                                                               2
                        Since the characteristic function of Z 1 is exp(−t /2) and Z 1 and Z 2 are independent,
                                              1  2  2           1         1  2  2  2
                                                     	      ∞
                               ϕ(t) = E exp − t /Z 2   =     √     exp − (t /z + z ) dz
                                              2           −∞   (2π)       2
                                   = exp(−|t|), −∞ < t < ∞.
                          The density of this distribution may be obtained using Theorem 3.8. Since

                                                     ∞

                                                       exp(−|t|) dt = 2,
                                                    −∞
                        it follows that the distribution of X has density function
                                       1     ∞
                               p(x) =        exp(−itx)exp(−|t|) dt
                                      2π  −∞
                                       1     ∞                   1     ∞
                                   =         exp(−itx)exp(−t) dt +     exp(itx)exp(−t) dt
                                      2π  0                      2π  0
                                       1     1      1
                                   =            +
                                      2π  1 + ix  1 − ix
                                      1   1
                                   =         , −∞ < x < ∞.
                                      π 1 + x 2
                        Hence, X has a standard Cauchy distribution; see Example 1.29.
   94   95   96   97   98   99   100   101   102   103   104