Page 379 - Elements of Chemical Reaction Engineering Ebook
P. 379

350                               Nonelementary Reaction Kinetics   Chap. 7


                                         (C,H,*):  5 kzClC~-k3C4fk4C,C,-k,C~          (E7-2.18)
                                                   dt
                                                       =
                                                  dC5
                                          (CZH4):  - k3C4                             (E7-2.19)
                                                      =
                                                   dt
                                                  dC6
                                            (He):  - k,C4-k4ClC,                      (E7-2.20)
                                                   dt


                                            (Hz):  2 = k4C,C6                        (E7-2.21)


                                                  dC8
                                         (~4~10): -  k.j~:                           (E7-2.22)
                                                      =
                                                   dt   2
                             The POLYMATH program is given in Table E7-2.1.


                                               TABLE E7-2.1.  POLYMATH PROGRAM
                                                Equations:                        Initial  Values:
                              d(C1) /d( t)~-kliC1-k2tCl*C2-C4*Cl~C6                  0.1
                              d(C2) /d( t)=2*kl%Cl-K2*Cl*C2                          0
                              d(C6)/d(t)~k3*C4-k4*CB*Cl                              0
                              d( C7) /d( t) =k4*Cl*C6                                0
                              d(C3) /d( t) =CZ*Cl*CZ                                 0
                              d( C4) /d( t)                                          0
                              d(CS)/d( t)=C3*C4                                      0
                              d(C8)/d( t)d0.5*k5*C4^2                                0
                              d(CF'5) /d( t)=k3*( 2*kl/k5)*0.5XCPi^0.5               0
                              d( CPl) /d( t) =-ki*CP1-2*rl*CPl-(C3*(2*ltl/~~)"O.~)*(CF'~*O. 5)   0.1
                               C6=3960000000
                              T=iWO
                              Ll-lOxexp( (875Oo/l1 487) I( 1/1250-1/T))
                                                             1
                              ~2=84~0~rexp((~30~/~.987)*(1/1250-~/T)
                              Cd-253ooMXl00xexp((9700/1.987)*(  1/125@1/T))
                               C3=320WOMe~p( (40000/l.Q87)*(l/l~O-l/T))
                               to - 0,   tf =  12


                                 Figure E7-2.1  shows a comparison of  the concentration-time trajectory for
                            ethane calculated from the  PSSH (CPI) with  the ethane trajectory  (Cl) calculated
                            from  solving  the  mole  balance  Equations  (E7-2.14)  through  (E7-2.20).  Figure
                            E7-2.2 shows a similar comparison for ethyIene (CP5) and (C5). One notes that the
                            curves are identical, indicating the validity of the PSSH under these conditions. Fig-
                            ure E7-2.3 shows a comparison the concentration-time trajectories for methane (C3)
                            and butane (CS). Problem W-2(a) explores the temperature for which the PSSH is
                            valid for the cracking of ethane.
   374   375   376   377   378   379   380   381   382   383   384